MATHS
Paper 2 (P2): Trignometery 3D Topic Quiz 5
Question 1:
The diagram shows a **pyramid** with a **horizontal rectangular base**.
Given:

Given:
- Base length = **4.8 m**
- Base width = **3 m**
- Height of the pyramid = **4 m**
(i) Calculate **y**, the length of a **sloping edge** of the pyramid.
Answer: **............................... m** [4]
(ii) Calculate the **angle between a sloping edge and the rectangular base** of the pyramid.
Answer: **...............................** [2]
Question 2:
The diagram shows a **pyramid** on a **rectangular base ABCD**.
Given:

- AB = **8 cm**
- BC = **6 cm**
- PM = **9 cm**
- AC and BD intersect at **M**, and **P is vertically above M**.
(a) **N** is the **midpoint** of **BC**.
Calculate **angle PNM**.
Answer: **...............................°** [2]
(b) Show that **BM = 5 cm**.
Answer: **............................... cm** [1]
(c) Calculate the **angle between the edge PB and the base ABCD**.
Answer: **...............................°** [2]
(d) A **point X is on PC** so that **PX = 7.5 cm**.
Calculate **BX**.
Answer: **............................... cm** [6]
Question 3:

(a) In the **pentagon ABCDE**, given:
- **Angle ACB = Angle AED = 90°**
- Triangle **ACD is equilateral** with **side length 12 cm**
- **DE = BC = 6 cm**
(i) Calculate **angle BAE**.
Answer: **...............................°** [4]
(ii) Calculate **AB**.
Answer: **............................... cm** [2]
(iii) Calculate **AE**.
Answer: **............................... cm** [3]
(iv) Calculate the **area of the pentagon**.
Answer: **............................... cm²** [4]

(b) The diagram shows a **cuboid** where:
- **AB = 8 cm, BC = 4 cm, CR = 5 cm**
(i) Write down the **number of planes of symmetry** of this cuboid.
Answer: **...............................** [1]
(ii) Calculate the **angle between the diagonal AR and the plane BCRQ**.
Answer: **...............................°** [4]
Question 4:

A **rod of length 145 cm** is placed inside a water tank.
- One end of the rod is at the **bottom corner** of the tank.
- The other end is **x cm below the top corner** of the tank.
(c) Calculate the value of **x**.
Answer: **............................... cm** [4]
(d) Calculate the **angle** that the rod makes with the base of the tank.
Answer: **...............................°** [3]
Question 5:

**(a)** A, B, and C are points on horizontal ground. BT is a **vertical pole**.
Given:
- AT = **60 m**
- AB = **50 m**
- BC = **70 m**
- Angle ABC = **130°**
(i) Calculate the **angle of elevation** of T from C.
Answer: **...............................°** [5]
Answer: **...............................°** [5]
(ii) Calculate the length **AC**.
Answer: **............................... m** [4]
Answer: **............................... m** [4]
(iii) Calculate the **area of triangle ABC**.
Answer: **............................... m²** [2]
Answer: **............................... m²** [2]

**(b)** A **cuboid** has:
Answer: **............................... cm** [4]
- Length = **45 cm**
- Width = **22 cm**
- Height = **12 cm**
Answer: **............................... cm** [4]
Question 6:

The diagram shows a **tent ABCD**.
- The front of the tent is an **isosceles triangle ABC**, with **AB = AC**.
- The sides of the tent are congruent triangles **ABD** and **ACD**.
**(a)** Given:
Answer: **............................... m** [3]
- BC = **1.2 m**
- Angle ABC = **68°**
Answer: **............................... m** [3]
**(b)** Given:
Answer: **...............................°** [4]
- CD = **2.3 m**
- AD = **1.9 m**
Answer: **...............................°** [4]
**(c)** The floor of the tent, **triangle BCD**, is an **isosceles triangle** with **BD = CD**.
Calculate the **area of the floor of the tent**.
Answer: **............................... m²** [4]
Calculate the **area of the floor of the tent**.
Answer: **............................... m²** [4]
**(d)** When the tent is on horizontal ground, **A is 1.25 m above the ground**.
Calculate the **angle between AD and the ground**.
Answer: **...............................°** [3]
Calculate the **angle between AD and the ground**.
Answer: **...............................°** [3]
Solution
Solution