

Comparison of key skills specifications 2000/2002 with 2004 standardsX015461July 2004Issue 1

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2024 Question Paper Log Number P78915A Publications Code WST02_01_2410_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)

Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN:

- bod benefit of doubt
- ft follow through $\sqrt{}$
 - o the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to

- SC special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- □ The answer is printed on the paper or ag- answer given
 □
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Comparis on of key skills specificat ions 2000/200 2 with 2004 standards X015461 July 2004Issu e 1Questio n Number		Scheme	Marks
1 (a)	X = Num	ber of items of litter found in a $2m^2$ area of the beach So $X \boxtimes Po(8)$	
		$P(X_{n} = \frac{e^{-8} \times 8^{5}}{5!} \text{or} P(X_{n} = 5) - P(X_{n} = 4) = 0.1912 - 0.0996$	M1
		= 0.09160 awrt 0.0916	A1
			(2)
(b)	Y = Num	ber of face masks found in a 5m ² area of the beach	(_)
	Y 🛛 Po(6) or $P(Y \dots 5) = 1 - P(Y \dots 4) = 1 - 0.2851$	M1
	(
		= 0.7149 awrt 0.715	A1 (2)
(c)	W = Nun	hber of items of litter that are not face masks found in a 20m ² area of the beach	(2)
	₩ 🛛 N(5	56,56)	M1
	P(W < 6)	$50) = P\left(Z < \frac{59.5 - 56}{\sqrt{56}}\right)$	M1 M1
	Tables [= P(Z < 0.47)] = 0.6808 calculator 0.68000 awrt 0.68	A1
			(4)
		Notes	Total 8
(a)	M 1	for use of $\frac{e^{-8}\lambda^5}{5!}$ or $P(X_n \ 5) - P(X_n \ 4)$	
	A1	awrt 0.0916 (correct answer scores 2 out of 2)	
		for writing or using Po(6) $P(W = 1) = P(W = 1)$	
(b)	M1	or for a correct probability statement $1 - P(Y, 4)$ or $P(Y 5)$	
		e.g. $P(Y \dots 5) = 1 - P(Y \dots 5)$ is M0	
	A1	awrt 0.715 (correct answer scores 2 out of 2)	
(c)	M1	for writing or using N(56, 56) may be seen in standardisation	

	(may be implied by the standardisation $\frac{x-56}{\sqrt{56}}$)
M1	standardising with 59.5/60/60.5, their mean and their standard deviation
M1	using a continuity correction $60 + 0.5$ [=60.5] or $60 - 0.5$ [=59.5]
A1	awrt 0.68 (NB Use of exact Poisson gives 0.68617and scores 0 out of 4)

Comparis on of key skills specificat ions 2000/200 2 with 2004 standards X015461 July 2004Issu e 1Questio n	Scheme	Marks
Number		
2 (a)	$B\left(25,\frac{1}{5}\right)$	B1
		(1)
(b)(i)	[M =]4X - (25 - X) [= 5X - 25]	B1
(ii)	E(M) = '5'E(X) - '25'	M1
	$\mathcal{E}(X) = np = 25 \times \frac{1}{5} = 5$	M1
	$E(M) = 5 \times 5 - 25 = 0 *$	A1*
		(4)
(c)	$M \dots 30 \Longrightarrow '5' X - '25' \dots 30 [\Longrightarrow X \dots 11]$	M1

	[P(X	$(11') = 1 - P(X_n (10')] = 1 - (0.9944')$	M1
	= 0.0050	40.0056	A1
	- 0.0030		(3)
(d)	<i>Y</i> ⊠ B(5	0, 0.5)	
(u)	,	(30) = 0.9328	M1
		$P(Y_n \ n) = 0.9328$	M1
	$P(Y_n n)$	0 = 0.0077	M1
	<i>n</i> =16		A1
			(4)
		Notes Correct distribution fully specified. Allow in words e.g. Binomial with $n = 25$ and $p =$	Total 12
(a)	B1	Must be seen in part (a)	0.2
		Mark parts (b)(i) and (b)(ii) together	
(b)(i)	B1	For a correct expression for <i>M</i> Allow unsimplified	
(ii)	M1	For either $5'E(X) - 25'$ or $E(M) = 5 \times \left(25 \times \frac{1}{5}\right) - 25$ or $4'E(X) - 1(25' - E(X))$	
		This must be an expectation statement with the expectation stated in symbol or in wor	ds.
		$5 \times 5 - 25 = 0$ or $4 \times 5 - 1 \times 20 = 0$ on its own is M0	
	M1	For sight of $25 \times \frac{1}{5}$ or stating $E(X) = 5$	
	A1*	Fully correct solution with $E(M) = 0$ stated. This may be stated in words. The answer is given so no incorrect working can be seen	
SC		M1M1 [Expected number of marks (per question) =] $4 \times \frac{1}{5} - 1 \times \frac{4}{5}$ A1 therefore 1	E(<i>M</i>)=0
(c)	M1	For substitution of their M into a linear inequality in terms of X implied by $X \dots 11$	
	M1	For use of correct probability statement from their '11'	
	A1	awrt 0.0056 (calc 0.0055549)	
(d)	M1	For a correct probability equation (implied by 2^{nd} M1) P(V = 30) = P(V = n) = 0.0328 = 0.0405 = P(V = n) = 0.0328	
	M1	For $P(Y_n \ 30) - P(Y_n \ n) = 0.9328$ or $0.9405 - P(Y_n \ n) = 0.9328$	
	M1	For $P(Y_n \ n) = 0.0077$	
	A1	Cao $P(n < Y_n \ 30) = 0.9328$ $P(Y_n \ 30) - P(Y_n \ n-1) = 0.9328$ $P(Y_n \ n-1) =$	0.0077
SC		$P(n < T_n \ 50) = 0.9528$ $P(T_n \ 50) - P(T_n \ n-1) = 0.9528$ $P(T_n \ n-1) = 0.9528$ $P(T_n \ n-1) = 0.9528$	0.0077
Comparis on of key skills specificat ions		Scheme	Marks

2000/200			
2000/200 2 with			
2004			
standards			
X015461			
July			
2004Issu			
e 10 vertie			
1Questio n			
Number			
3 (a)	Po(7)		B1 (1)
	C 1		(1) D1 D1
(b)	Custome	ers enter the shop occur singly/randomly/independently/constant (average) rate	B1, B1 (2)
	Η · λ –	$\mathbf{H}_{1}: \lambda \neq \mathbf{T}$	
(c)	$11_0 . n -$		B1ft
			(1)
(d)	P(X, 2)	= awrt 0.0073 $P(X_n \ 2) = awrt \ 0.0296$	M1
	P(X 13	B) = awrt 0.0270 $P(X 14) = awrt 0.0128$	M1
	X,, 2 ∪2	<i>X</i> 14	A1
			(3)
(e)	0.0073+	-0.0128 = 0.0201	M1
	So 2.01%	/ 0	A1ft
			(2)
(f)	12 is not	in the critical region	M1
		is insufficient evidence that rate of customers entering the shop has changed	A1
			(2)
		Notes	Total 11
(a)	B1	Correct distribution fully specified. Po(isson) and $\lambda = 7$	
		For two of the given assumptions (must have context of customers/people)	
(b)	B1, B1	Context only needs to be stated once.	
		(B1B0 for one assumption in context or for two assumptions with no context)	
(c)	B1ft	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Ft their 7 from part (a) in the hypotheses	
		Use of $Po(7)$ to find the lower critical value.	
(d)	M1	May be implied by either awrt 0.0073 or awrt 0.0296 seen (must be seen in part (d))	
	1411	Also implied by $X=1$ or X_{μ} 2	
		Use of $Po(7)$ to find the upper critical value.	
	M1	May be implied by awrt 0.0270 or awrt 0.0128 or awrt 0.973 or awrt 0.987 seen (must part (d))	be seen in
		Also implied by $X=14$ or $X \dots 14$	
	A1	$X_{\mu} \ 2, X_{\mu} \ 14_{\mu} \ 2_{\mu} \ 2_{\mu} \ 14_{\mu} \ 2_{\mu} \ 2_{\mu} \ 14_{\mu} \ 14_{\mu} \ 2_{\mu} \ 14_{\mu} \ 14_{\mu} \ 2_{\mu} \ 14_{\mu} \ $	
		Allow equivalent forms e.g. $X < 2, X > 13$	

		Must be a CR and not a probability statement		
		$P(X_{u} 2), P(X_{u} 14)$ scores M1M1A0		
(e)	M1	Adding the two probabilities (each must be less than 0.05) for their critical region		
	A1ft	awrt 0.0201 or awrt 2.01% ft the sum of their two selected probability tails		
(f)	M1	For a correct comparison of 12 with their CR (or their implied CR if one is not explicitly stated), 12 is not in the CR condone $12 < '14'$ Finding P(X = 12) is M0 Finding P(X 12) on its own is M0, they must state 12 is not in the CR		
	A1	Correct conclusion in context. Must be a rate, e.g. number in/per 10-minute period (not number on its own). No hypotheses in part (c) then A0 Do not allow comments about the manager's claim on its own, e.g. The manager's claim is not supported. This is not a ft mark.		

Comparis on of key skills specificat ions 2000/200 2 with 2004 standards X015461 July 2004Issu e 1Questio n Number		Scheme		Marks
4 (i)(a)	$\frac{b-27}{b-a} = \frac{3}{4} \text{ or } \frac{27-a}{b-a}$	$\frac{a}{b} = \frac{1}{4}$ and $\frac{(b-a)^2}{12} = 300$		M1M1
	a = 12 and b = 72			A1 (3)
(b)	$\left[4P(X < k - 10) = P(X > k + 20) \Rightarrow\right] 4\left(\frac{k - 10 - '12'}{'72 - 12'}\right) = \frac{'72' - (k + 20)}{'72 - 12'}$			
	$4(k-22) = 52 - k \Longrightarrow$	<i>k</i> = 28		A1
				(2)
(ii)	<i>L</i> 🛛 U(21, 42)	$L \boxtimes \mathrm{U}(0, 42)$	<i>S</i> 🛛 U(5.25, 10.5)	
	$\frac{L}{4} - \left(\frac{42 - L}{4}\right) > 2$	$\frac{L}{4} - \left(\frac{42-L}{4}\right) > 2 \text{ or } \left(\frac{42-L}{4}\right) - \frac{L}{4} > 2$	S - (10.5 - S) > 2	M1
	<i>L</i> > 25	<i>L</i> < 17 or <i>L</i> > 25	<i>S</i> > 6.25	A1

	=(42-'	$25') \times \frac{1}{21}$	$= ('17'-0) \times \frac{1}{42} + (42-'25') \times \frac{1}{42}$	$(10.5 - 6.25') \times \frac{1}{5.25}$	M1
			$=\frac{17}{21}$ oe		A1
					(4)
		1	Notes		Total 9
(i)(a)	M1	For setting u	p a correct equation for the probability or the	variance	
	M1	For setting u	p a correct equation for the probability and th	e variance	
	A1	For $a = 12$ a	nd $b = 72$ (correct answers score 3 out of 3)		
(b)	M1	For an unsin	nplified equation ft their a and their b		
	A1	Cao			
(ii)	M1	M1 For $\frac{L}{4} - \left(\frac{42 - L}{4}\right) > 2$ or $\left(\frac{42 - L}{4}\right) - \frac{L}{4} > 2$ or $S - (10.5 - S) > 2$ may be seen in a probability statement allow any letter for L or S may be implied by $L > 25$ or $L < 17$ or $S > 6.25$			
	A1	L > 25 or	L < 17 or $S > 6.25$ may be seen in a pr	obability statement or implie	ed by 2 nd M1
	M1	('17'-0) or	$42 - '25') \times \frac{1}{21}$ $1 \times \frac{1}{42} + (42 - '25') \times \frac{1}{42}$ $6.25') \times \frac{1}{5.25}$		
	A1	Allow awrt	0.81		

$5 (a) \qquad \int_{1}^{x} \frac{1}{4} (3-t) dt = \frac{1}{4} \left[3t - \frac{t^{2}}{2} \right]_{n}^{x} \qquad \int_{0}^{1} \frac{1}{4} (3-x) dx = \frac{1}{4} \left[3x - \frac{x^{2}}{2} \right] + C \qquad MI$ $\frac{1}{4} \left[\left[3x - \frac{x^{2}}{2} \right] - \left(3 - \frac{1}{2} \right) \right] \qquad \text{or} \qquad \frac{1}{4} \left[3(1) - \frac{(1)^{2}}{2} \right] + C = 0 \qquad \text{and} \qquad C = -\frac{5}{8}$ $Leading to \qquad \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} [for 1_{x} x_{x} 2] \\ \text{Leading to } \qquad \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} [for 1_{x} x_{x} 2] \\ \text{Leading to } \qquad \frac{1}{4} \left(x - \frac{1}{2} \right) - \frac{5}{8} [for 1_{x} x_{x} 2] \\ \text{(b)} \qquad \frac{\int_{2}^{x} \frac{1}{4} dt + F(2) \text{or} \qquad \int \frac{1}{4} dx \\ 0 x \leq 1 \\ \int_{3}^{x} \frac{1}{4} (t-2) dt + F(3) \text{or} \qquad \int \frac{1}{4} (x-2) dx \\ \text{and using } + c \text{ with } F(2) = \frac{3}{8} \text{or} \qquad MI \\ \frac{1}{1} \qquad \frac{1}{1} \left(\frac{3x - \frac{x^{2}}{2}}{2} \right) - \frac{5}{8} 1_{x} x_{x} 2 \\ F(x) = \begin{cases} \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} 1_{x} x_{x} 2 \\ \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} 1_{x} x_{x} 2 \\ \frac{1}{4} \left(\frac{x^{2}}{2} - 2x \right) + 1 3 < x_{x} 4 \\ \frac{1}{1} x > 4 \end{cases} \qquad \qquad$	Comparis on of key skills specificat ions 2000/200 2 with 2004 standards X015461 July 2004Issu e 1Questio n Number	Scheme	Marks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 (a)	$\int_{1}^{x} \frac{1}{4} (3-t) dt = \frac{1}{4} \left[3t - \frac{t^{2}}{2} \right]_{1}^{x} \qquad \int \frac{1}{4} (3-x) dx = \frac{1}{4} \left[3x - \frac{x^{2}}{2} \right] + C$	M1
(b) $\int_{2}^{x} \frac{1}{4} dt + F(2) \text{ or } \int \frac{1}{4} dx \text{ and using } + c \text{ with } F(2) = \frac{3}{8} \text{ or } M1$ $\int_{3}^{x} \frac{1}{4} (t-2) dt + F(3) \text{ or } \int \frac{1}{4} (x-2) dx \text{ and using } + c \text{ with either } F(3) = \frac{5}{8} \text{ or } F(4) = M1$ I I $F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} & 1_{x} & x_{y} & 2 \\ \frac{1}{8} (2x-1) & 2 < x_{y} & 3 \\ \frac{1}{4} \left(\frac{x^{2}}{2} - 2x \right) + 1 & 3 < x_{y} & 4 \\ 1 & x > 4 \end{cases}$ $A1$ $B1$ $A1$ $B1$ (5)		$\frac{1}{4}\left(3x-\frac{x^2}{2}\right)-\frac{5}{2}$ [for 1 , x , 2]	
$\int_{3}^{x} \frac{1}{4} (t-2) dt + F(3) \text{ or } \int \frac{1}{4} (x-2) dx \text{ and using } + c \text{ with either } F(3) = \frac{5}{8} \text{ or } F(4) = M1$ 1 $F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{4} \left(3x - \frac{x^{2}}{2} \right) - \frac{5}{8} & 1_{n} & x_{n} & 2 \\ \frac{1}{8} (2x-1) & 2 < x_{n} & 3 \\ \frac{1}{4} \left(\frac{x^{2}}{2} - 2x \right) + 1 & 3 < x_{n} & 4 \\ 1 & x > 4 \end{cases}$ $A1$ $A1$ $B1$ $B1$ $B1$ $B1$	(b)	$\int_{2}^{x} \frac{1}{4} dt + F(2) \qquad \text{or} \qquad \int \frac{1}{4} dx \qquad \text{and using} + c \text{ with } F(2) = \frac{3}{8} \qquad \text{or}$	
$F(x) = \begin{cases} 1 & 0 & x < 1 \\ \frac{1}{4} \left(3x - \frac{x^2}{2} \right) - \frac{5}{8} & 1_n & x_n & 2 \\ \frac{1}{8} (2x - 1) & 2 < x_n & 3 \\ \frac{1}{4} \left(\frac{x^2}{2} - 2x \right) + 1 & 3 < x_n & 4 \\ 1 & x > 4 \end{cases}$ (5)		0.25(x-2) + F(2)	
		1	M1
		$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{4} \left(3x - \frac{x^2}{2} \right) - \frac{5}{8} & 1_n x_n & 2 \\ \frac{1}{8} (2x - 1) & 2 < x_n & 3 \\ \frac{1}{4} \left(\frac{x^2}{2} - 2x \right) + 1 & 3 < x_n & 4 \\ 1 & x > 4 \end{cases}$	A1 B1
	(c)	P(1.2 < X < 3.1) = F(3.1) - F(1.2)	(5)

	$\left(1\right)\left(2\right)$	$(1)^2$)) $(1((12)^2) 5)$ 80	
	$\left \left(\frac{1}{4} \right) \left(\frac{(3)}{2} \right) \right $	$\frac{1)^2}{2} - 2(3.1) + 1 - \left(\frac{1}{4} \left(3(1.2) - \frac{(1.2)^2}{2}\right) - \frac{5}{8}\right) = \frac{89}{160}$ awrt 0.556	M1 A1
			(2)
		Notes	Total 9
(a)	M1	For a correct method for $1 x x 2$ Condone poor notation e.g. $\int_{1}^{x} \frac{1}{4} (3-x) dx$	
	A1*	A fully correct solution with substitution seen or C found leading to $F(x) = \frac{1}{4} \left(3x - \frac{x}{2} \right)$	$\left(\frac{2}{2}\right) - \frac{5}{8}$
(b)	M1	For a correct method for $2 < x$, 3	
	M1	For a correct method for $3 < x$, 4	
	A1	Third line correct including inequality. Allow < instead of ≤	
	A1	Fourth line correct including inequality. Allow < instead of ≤	
	B1	First and fifth line correct. Allow "otherwise" for the range on the first or fifth line but	not both
(c)	M1	For use of $F(3.1) - F(1.2)$ from the correct lines of their $F(x)$ allow ft on their 4 th line or correct use of $f(x)$ or area e.g. $\frac{1}{2} \times \frac{7}{10} \times 0.8 + 1 \times \frac{1}{4} + \frac{1}{2} \times \frac{21}{40} \times 0.1$	
		or correct use of $f(x)$ or area e.g. $2 10 \qquad 4 2 40$	
	A1	For $\frac{89}{160}$ or awrt 0.556 NB: Use of F(3.1) with $\frac{1}{8}(2x-1)$ for $2 < x$, 3 gives scores M0A0	s 0.555 and
Comparis on of key skills specificat ions 2000/200 2 with 2004 standards X015461 July 2004Issu e 1Questio n Number		Scheme	Marks
6 (a)	Box A:	P(1) = $\frac{1}{4}$ P(2) = $\frac{3}{4}$ Box B: P(2) = $\frac{1}{5}$ P(5) = $\frac{4}{5}$ D 5, 6, 8, 9, 11, 12	B1 B1
		(1, 2, 5) $(1, 5, 5)$ $(2, 2, 2)$ $(2, 2, 5)$ $(2, 5, 5)$	B1
		[(1, 5, 2)] [(2, 5, 2)]	
	$\left[\mathbf{P}(T=5)\right]$	$[P(T=6) =]\frac{1}{4} \times \frac{1}{5} \times \frac{1}{5} \left[= \frac{1}{100} \right] \qquad [P(T=6) =]\frac{3}{4} \times \frac{1}{5} \times \frac{1}{5} = \left[\frac{3}{100} \right]$	M1 M1

1						
	$\left[\mathbf{P}(T=8)\right]$	$[P(T=9)=]2 \times \frac{1}{4} \times \frac{1}{5} \times \frac{4}{5} = \left[\frac{8}{100}\right] \qquad [P(T=9)=]2 \times \frac{3}{4} \times \frac{1}{5} \times \frac{4}{5} = \left[\frac{24}{100}\right]$	M1			
	$\left[P(T=11) = \right] \frac{1}{4} \times \frac{4}{5} \times \frac{4}{5} = \left[\frac{16}{100} \right] \qquad \left[P(T=12) = \right] \frac{3}{4} \times \frac{4}{5} \times \frac{4}{5} = \left[\frac{48}{100} \right]$					
	$\begin{array}{ c c }\hline t \\ P(T=t) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1			
			(7)			
(b)	m = 2	m = 5	B1			
	$\left \left P(M = M) \right \right $	$(=2) =]'\frac{1}{100}' + '\frac{8}{100}' + \frac{3}{100}' + '\frac{24}{100}' = \boxed{\frac{36}{100}}$	M1			
	$\int \mathbf{D}(M) =$	(-5) - 7, 16, 48, - 64				
		$= 5) = \left[\frac{16}{100} + \frac{48}{100} \right] = \left[\frac{64}{100} \right]$ or $P(M = 5) = 1 - P(M = 2)'$	M1			
	m					
	P(M = r)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1			
		$\frac{30}{100} = \frac{04}{100}$	AI			
		Notes	(4) Total 11			
(a)	B1	All 4 correct probabilities – may be seen in an equation	1000111			
(u)	B1	All 6 totals correct with no extras (ignore units if stated) (condone 8 or 9 listed twice)				
		All 6 basic combinations correct, either seen or used (implied by the 3 rd M1 mark)				
	БІ	B1 Condone any permutation of the 6 basic combinations for this mark				
	M1 Correct method for one probability (ft their probabilities)					
	M1 Correct method for five probabilities (ft their probabilities)					
		M1 Correct method for all six probabilities (ft their probabilities)				
(1-)		A1 cao Need not be in a table but probabilities must be attached to the correct total				
(b)	<u>B1</u>	For both values of <i>m</i> (no extras) If $m = 1$ is stated it must be stated that its probability	/ 15 U			
	M1 Ft part (a) For a correct method to find $P(M = 2)$ For this mark there must only be 2 probability calculations					
	Et part (a) For a correct method to find $P(M = 5^{\circ})$					
	M1	For this mark there must only be 2 probability calculations				
	A1 cao Need not be in a table but probabilities must be attached to the correct total					

Comparis		
on of key		
skills		
specificat		
ions 2000/200		
2000/200 2 with		
2004		16.1
standards	Scheme	Marks
X015461		
July		
2004Issu		
e 1Questio		
n		
Number		
	$\frac{1}{2} \times 8 \times 4a = 1 \Rightarrow a = \frac{1}{16} * \text{or} \int_{[0]}^{[4]} ax dx = 0.5 \Rightarrow \left[\frac{ax^2}{2}\right]_0^4 = 0.5 \Rightarrow a = \frac{1}{16} *$	B1*
		(1)
	1	(1)
(b) (i)	(By symmetry) $b = -\frac{1}{16}$	B1
(ii)	At (8, 0) $0 = -\frac{1}{16} \times 8 + c \Rightarrow c = \frac{1}{2}$ or at (4, 0.25) $0.25 = -\frac{1}{16} \times 4 + c \Rightarrow c = \frac{1}{2}$	M1 A1
		(3)
(c)	$\mathrm{E}(X) = 4$	B1
	$E(X^{2}) = \int_{0}^{4} x^{2} \left(\frac{1}{16}x\right) dx + \int_{4}^{8} x^{2} \left(-\frac{1}{16}x + \frac{1}{2}\right) dx$	M1
	$= \frac{1}{64} \left[x^4 \right]_0^4 + \left[-\frac{1}{64} x^4 + \frac{1}{6} x^3 \right]_4^8$	A1ft
	$=4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right] \left[= \frac{56}{3} \right]$	dM1A1
	$Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} $	A1*
		(6)
(d)	$\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4} \qquad \text{or} \qquad \int_0^{Q_1} \frac{1}{16} x dx = 0.25 \to \frac{Q_1^2}{32} = 0.25$	M1
	$Q_1 = \sqrt{8} = 2.828$ or $Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 or awrt 5.17	Al
	$Q_1 = \sqrt{8} = 2.828$ and $Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 and awrt 5.17	Al
		(3)
(e)	$\mathcal{O}_{\mathcal{O}}$ $\mathcal{O}_{\mathcal{O}}$ $\mathcal{O}_{\mathcal{O}}$	
	50% lies between Q_1 and Q_3	

	Statistici	P('4'- $\sqrt{\frac{8}{3}} < X < '4' + \sqrt{\frac{8}{3}}$) = P(2.37 < X < 5.63) tan's claim:	M1
	or	outside Q_1 and Q_3 , > 0.5/ statistician's claim is correct*	A1*
	P(2.37 -	$\langle X \langle 5.63 \rangle = 0.6498 > 0.5$ / statistician's claim is correct*	(2)
		Notes	(2) Total 15
(a)	B1* Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen		
(b)	B1	Cao	
	M1	Use of equation of line to find c e.g. $y-0 = -\frac{1}{16}(x-8)$ or use of integration or any val	id method
	A1	Cao correct answer scores M1A1	
	D1	F(Y) = A	
(c)	B1	For $E(X) = 4$ This may be seen at any point in the solution	
	M1	For use of $\int x^2 f(x) dx$ $x^n \to x^{n+1}$ for both parts of pdf (ignore limits) ft their values c	of <i>b</i> and
	A1ft	For correct integration of either of the 2 parts, ft their values of <i>b</i> and <i>c</i>	
	depM1	For use of correct limits in either part (dep on previous M1) may be implied by sight of 4 or $\frac{44}{3}$ but not implied by $\frac{56}{3}$ allow ft on their values of b and c which you may need to check	
	A1	For complete correct substitution $4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right] \text{ or } \frac{56}{3} \text{ allow}$ $= 4 + \frac{44}{3}$	V
	A1*	Answer is given so need to see use of $Var(X) = E(X^2) - E(X)^2 = \frac{8}{3}$ with values sub-	ostituted
(d)	M1	M1 For correct method for either Q_1 or Q_3 $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4}$ $\int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$	
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe or awrt 5.17 allow $8-\sqrt{8}$ oe	
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe and awrt 5.17 allow $8 - \sqrt{8}$ oe	
(e)	M1	For use of $P(\mu - \sigma < X < \mu + \sigma)$ ft their μ implied by awrt 2.37 and awrt 5.63	
	A1*	Must state that this > 0.5 as it is outside Q_1 and Q_3	

Allow '2.83' > '2.37' and '5.16' < '5.63'
or a correct probability calculated awrt 0.65
Answer is given so no incorrect working can be seen.
If their values are not consistent with the statistician's claim, then A0 here.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom