Mark schemes

Q1.
(a) increased
(b) (count) how many waves pass a point
in one second
this is dependent on the first mark point being awarded
or
(count) number of waves that pass a point in a given time allow a specific time for a given time

or

(count) number of waves that are produced in a given time (1)
and divide by that time in seconds
this is dependent on the first mark point being awarded allow an answer in terms of measuring the frequency of the vibrating bar
period $=\frac{1}{5}$
period $=0.2$
seconds / s

Q2.
(a) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.
(b) 0.4
(c) wave speed $=$ frequency \times wavelength
allow $v=f \lambda$
(d) $7200=0.4 \times$ wavelength
wavelength $=\frac{7200}{0.4}$

```
wavelength = 18000 (m)
    allow up to full marks for ecf using their answer to
    part (b)
    a method shown as
    7200 < 2.5 = 18000
    scores 0 marks
```

 an answer 18000 scores 3 marks
 (e) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.

Q3.
(a) P-waves are longitudinal and

S-waves are transverse
(b) 0.4
(c) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(d) $7200=0.4 \times$ wavelength
wavelength $=\frac{7200}{0.4}$
wavelength = $18000(\mathrm{~m})$
allow up to full marks for ecf using their answer to
part (b)
a method shown as
$7200 \times 2.5=18000$
scores 0 marks
an answer 18000 scores 3 marks
(e) because S -waves cannot travel through a liquid
and S-waves do not travel through the (outer) core
allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark
(f) magnetic field around the coil changes
or
the magnetic field (lines) cut by the coil
allow the generator effect
(g) because the magnet changes direction
(h) stationary
(i) any two from:

- \quad stronger magnetic field
allow stronger magnet
allow heavier magnet
bigger magnet is insufficient
- more turns on the coil
bigger coil is insufficient do not accept more coils of wire
- turns pushed closer together
- spring with a lower spring constant
allow less stiff spring
allow weaker spring
do not accept add an iron core

Q4.
(a) \mathbf{A}
(b) 2 (\%)
(c) black
correct order only
reflects
transmits
(d) green
(e) without a darkened laboratory would not be able to see reflected light
allow would see all squares all of the time
(f) so same 'amount' of light is incident on each square a fair test is insufficient control variable is insufficient
(g) two bars drawn at the correct height allow 1 mark for 1 correct bar
both bars correctly labelled
(h) orange
reason only scores if orange chosen
can be seen from the furthest away
allow it reflects the most light
(i) repeatable

Q5.
(a) random
human error is insufficient
(b) accept any practical suggestion that could cause a range of values e.g. misjudging the centre of the ray e.g. not replacing mirror / ray box in the same position measuring the angle incorrectly is insufficient moving the mirror / ray box is insufficient
(c) range $=10$
or
mean of 51 calculated
$5\left({ }^{\circ}\right)$
an answer of $5\left(^{\circ}\right)$ scores 2 marks
(d) within experimental accuracy the angle of incidence and the angle of reflection are the same
allow the angle of incidence is nearly the same as the angle of reflection
or
the angle of reflection is usually different to the angle of incidence
allow only a few of the values are the same /
similar
allow the idea of a range of values
relevant use of data
e.g.
at $20^{\circ} / 30^{\circ} / 40^{\circ}$ there is at least one measurement of angle of reflection that is exactly the same
or
at 50° there are big differences
allow 50° includes anomalous results an answer in terms of calculated mean(s) may score both marks
e.g. mean calculated for one or more angle of reflection (1) conclusion correctly stating angle $i=/ \neq$ angle r (1)
(e) results could be collected for angles (of incidence) not yet measured allow a stated angle of incidence e.g. 10° or 60° changing the mirror is insufficient ignore repeat the measurements
(f) replace the mirror with an irregular reflecting surface allow use an irregular reflecting surface replace mirror with paper is insufficient do not accept use a glass block

Q6.
(a) sound
(b) (visible) light
(c) cooking food

1
(d) 1.2 gigahertz
(e) $300000 \times 1000=300000000 \mathrm{~m} / \mathrm{s}$
(f) wave speed $=$ frequency \times wavelength
allow $v=f \lambda$
(g) $300000000=1200000000 \times \lambda$
an answer of 0.25 scores 3 marks
$\lambda=\frac{300000000}{1200000000}$
allow ecf from (e)

$$
\lambda=0.25(\mathrm{~m})
$$

1

Q7.
(a) K
(b) \mathbf{L} and \mathbf{M}
(c) the oscillation should be perpendicular to the direction of the stretched spring
allow up and down
(d) timing less than five echoes
(e) $3(.0)$
(f) 750 (m)
(g) speed $=\frac{750}{3}$
an answer of 250 (m/s) scores 2 marks
speed $=250(\mathrm{~m} / \mathrm{s})$ allow ecf from parts (e) and (f)
(h) any two from:

- time more than 5 echoes
- students stand further from the building
- have 2 or more students (independently) measuring the time taken use a stopwatch with a higher resolution is insufficient

Q8.
(a) arrow drawn vertically downwards from the weight
same length as given arrow
(b) \mathbf{C}
reason only scores if \boldsymbol{C} is chosen
smallest force required for the same compression
(c) 1.25
(d) period $=\frac{1}{25}$
an answer of 0.8 (s) scores 2 marks
period $=0.8(\mathrm{~s})$
(e) extension $=0.20 \mathrm{~m}$
$\mathrm{E}_{\mathrm{e}}=0.5 \times 7.0 \times(0.20)^{2}$
$\mathrm{E}_{\mathrm{e}}=0.14(\mathrm{~J})$
an answer of 0.14 scores 3 marks
1

Q9.
(a) (resultant) force $=$ mass \times acceleration
allow $F=m a$
symbols must be correct
(b) $(2.7-1.5)=0.75 \times \mathrm{a}$
an answer of 1.6 scores 3 marks
$a=\frac{1.2}{0.75}$
allow compensation marks for correct use of incorrect resultant force
$a=1.6$
$\mathrm{m} / \mathrm{s}^{2}$
(c) transverse
the oscillation / vibration is perpendicular to the direction of energy transfer
allow wave travel for energy transfer
(d) use springs with a smaller spring constant
allow use weaker springs
or
use a trolley with greater mass
allow use a heavier trolley
do not accept use a larger trolley
allow add a mass / weight to the trolley

Q10.
(a) gamma rays
(c) explosion of a red super giant
or
a supernova
(d) $1.2 \times 10^{9} \mathrm{~Hz}$
(e) $3.0 \times 10^{8}=1.2 \times 10^{9} \times \lambda$
an answer of $0.25(\mathrm{~m})$ scores 3 marks
allow ecf from (d)

$$
\lambda=\frac{3.0 \times 10^{8}}{1.2 \times 10^{9}}
$$

$\lambda=0.25(\mathrm{~m})$
(g) same as the radio wave
(f) expansion due to fusion energy
in equilibrium with gravitational collapse
forces acting inwards equal forces acting outwards gains 1 mark
(h)

Level 2: Scientifically relevant facts, events or processes are identified and given in detail to form an3-4 accurate account.

Level 1: Facts, events or processes are identified and simply stated but their relevance is not clear.1-2

No relevant content	0
Indicative content	

- Sun goes from main sequence to red giant
- then from red giant to white dwarf
- when the Sun changes to a red giant the surface temperature will decrease
- and the relative luminosity will increase
- when changing from a red giant to a white dwarf the surface temperature increases
- and the relative luminosity decreases

Q11.

(a) K
(b) Decreases
(c) use a metre rule / 30 cm ruler to measure across 10 (projected) waves accept any practical number of waves number for 10
and then divide by 10
(d) $1.2 \mathrm{~cm}=0.012 \mathrm{~m}$
$18.5 \times 0.012=0.22(2)(\mathrm{m} / \mathrm{s})$
allow 0.22(2) with no working shown for 2 marks
typical walking speed $=1.5 \mathrm{~m} / \mathrm{s}$
accept any value e.g. in the range 0.7 to $2.0 \mathrm{~m} / \mathrm{s}$
so the water waves are slower (than a typical walking speed)
this cannot score on its own

Q12.

(a) in a longitudinal wave the oscillations / vibrations are parallel to the direction of energy transfer.
accept wave travel for energy transfer throughout
in a transverse wave the oscillations / vibrations are perpendicular to the direction of energy transfer.
(b) accept any sensible suggestion eg a vibrating drum skin does not move the air away to create a vacuum (around the drum)
(c) Level 3 (5-6 marks):

A detailed explanation linking variations in current to the pressure variations of a sound wave, with a logical sequence.

Level 2 (3-4 marks):

A number of relevant points made, but not precisely. A link between the loudspeaker and a sound wave is made.

Level 1 (1-2 marks):
Some relevant points but fragmented with no logical structure.

0 marks:

No relevant content.

Indicative content

the current in the electrical circuit is varying
the current passes through the coil
the coil experiences a force (inwards or outwards)
reversing the current reverses the force
the size of the current affects the size of the force
the varying current causes the coil to vibrate
the (vibrating) coil causes the cone to vibrate
the vibrating cone causes the air molecules to move
the movement of the air molecules produces the pressure variations in the air needed for
a sound wave
the air molecules bunch together forming compressions and spread apart forming rarefactions

Q13.

(a) frequency
(b) echo(es)
(c) $340(\mathrm{~m} / \mathrm{s})$
allow 1 mark for a correct calculation showing an incorrect value from conversion to hertz $\times 0.0136$ an answer of 0.34 gains 1 mark
(d) (a wave where the) oscillations are parallel to the direction of energy transfer both marking points may appear as labels on a diagram accept vibrations for oscillations accept in same direction as for parallel to allow direction of wave (motion) for direction of energy transfer
allow 1 mark for a correct calculation showing an incorrect value from conversion to hertz $\times 0.0136$
causing (areas of) compression and rarefaction accept correct description in terms of particles mechanical wave is insufficient needs a medium to travel through is insufficient

Q14.
(a) X marked in the centre of the sign

Check position by eye
(b) concentrated
(c) $0.5(\mathrm{~s})$
allow 1 mark for correct
substitution, ie
$\frac{1}{2}$
provided no subsequent step
(d) make the cables longer
accept pendulum / sign for cables

Q15.

(a) 20000 Hz
(b) $\quad 400(\mathrm{~m})$
allow 1 mark for correct
substitution ie 1600×0.25
provided no subsequent steps shown
an answer of $200(\mathrm{~m})$ gains 1 mark
(c) twice
(d) From pulse 1 to pulse 3 the distance (to the sea floor) decreased accept the sea got shallower
or
the submarine went deeper for the distance decreased
then (after pulse 3) the distance (to the sea floor) increased
accept the sea got deeper
or
the submarine rose for the distance increased
An answer of the distance decreased then increased gains 1 mark

Q16.

(a) ultrasound is not ionising
allow ultrasound does not harm the (unborn) baby
but X -rays are ionising
so X-rays increase the health risk to the (unborn) baby
accept specific examples of health risks, eg cancer, stunted growth, impaired brain function etc
X-rays are dangerous is insufficient
(b) ultrasound/waves are partially reflected
(when they meet a boundary) (between two different media / substances / tissues)
must be clear that not all of the wave is reflected
the time taken is measured (and is used to determine distances)
(c) $1600(\mathrm{~m} / \mathrm{s})$
$800(\mathrm{~m} / \mathrm{s})$ gains 2 marks
$160000(\mathrm{~m} / \mathrm{s})$ gains 2 marks
0.0016 (m/s) gains 2 marks
allow 2 marks for
$\frac{0.04}{25 \times 10^{-6}}$
or
$\frac{0.08}{50 \times 10^{-6}}$
$80000(\mathrm{~m} / \mathrm{s})$ gains 1 mark
$0.0008(\mathrm{~m} / \mathrm{s})$ gains 1 mark
allow 1 mark for
$\frac{0.04}{25}$
or
$\frac{0.08}{50}$
allow 1 mark for evidence of doubling the distance or halving the time
(d) (i) they are absorbed by bone
allow stopped for absorbed
X-rays are reflected negates this mark
they are transmitted by soft tissue
allow pass through for transmitted
allow flesh / muscle / fat
accept less (optically) dense material for soft tissue
(the transmitted) X-rays are detected
(ii) short
accept small

Q17.
(a) high frequency sound (waves)
with a frequency above limit of human hearing or with a frequency greater than 20000 Hz
above limit of human hearing
or greater than 20000 Hz gains maximum 1 mark
(b) $\quad 5(.0) \times 10^{-4}(\mathrm{~m})$
or
0.0005 (m)
$1500=3 \times 10^{6} \lambda$ gains 2 marks answer of 500 gains 2 marks
$1500=3.0 \lambda$ gains 1 mark
(c) it will run off the surface of the skin Or water is not a gel
accept water would evaporate
(d) The width of the coupling agent

The width of the water
(e) (i) A
(ii) E
(f) (i) K
reflection from skin
maximum 5 marks if no mention of reflection
very little reflection, so small peak

L
reflection from front of kidney
large amount of reflection, so large peak

M
reflection from back of kidney
smaller peak due to absorption of ultrasound in kidney
or
smaller peak as further from source
or
front of the kidney already reflected a lot, so there is now less to be reflected
reflection from a boundary gains 1 mark if no other mark given
(ii) $\quad 0.06$ (m)
or
$6(.0) \times 10^{-2}$
0.12 (m) gains 2 marks
distance $=1500 \times 8 \times 10^{-5} \times 0.5$ gains 2 marks
distance $=1500 \times 8 \times 10^{-5}$ gains 1 mark

Q18.
(a) (i) microwave
(b) (i) wave M continues as a straight line to the ionosphere and shown reflected
accept reflection at or within the ionosphere
correctly reflected wave shown as a straight line reaching the top of the receiver
if more than 2 rays shown 1 mark maximum

ignore arrows
(ii) normal drawn at point where their \mathbf{M} meets the ionosphere

(c) any two from:

- transverse
- same speed (through air)
accept speed of light or $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- can be reflected
- can be refracted
- can be diffracted
- can be absorbed
- transfer energy
- can travel through a vacuum
an answer travel at the same speed though a vacuum scores 2 marks
- can be polarised
- show interference.
travel in straight lines is insufficient

Q19.
(a) 1.25
accept 1.3 for 2 marks
allow 1 mark for correct substitution
ie $\quad \frac{1}{0.8}$
provided no subsequent step shown
(b) (i) increasing the length (of the pendulum) decreases the number of oscillations / swings made (in 20 seconds)
accept increasing the length (of the pendulum) increases the time (of 1 oscillation / swing)
accept increasing the length (of the pendulum) decreases the speed / frequency (of 1 oscillation / swing) answers must refer to the effect of increasing / decreasing length
ignore references to time being proportional to length
changing the mass (of the pendulum bob) does not change the number of oscillations / swings made (in 20 seconds)
accept changing the mass does not change the time / speed
/ frequency / results
accept weight for mass
(ii) any two suitable improvements:

- measure (the number of swings) over a wider range of (pendulum) lengths
- measure (the number of swings) over a wider range of (bob) masses
- measure the number of swings made over a greater period of time
- repeat each measurement \& calculate mean / average (number of oscillations in 20 seconds)
accept repeat measurements \& discard anomalous measurements
repeat measurements is insufficient
- measure (the total number of swings \&) the fraction of swings made
- start the swings at the same height. use a computer / datalogger to make measurement (of number of oscillations) is insufficient measuring time period is insufficient using a stop clock with greater resolution is insufficient

Q20.
(a) pitch
loudness
(b) (i) as length (of prongs) decreases frequency / pitch increases accept converse accept negative correlation ignore inversely proportional
(ii) 8.3 (cm)
accept $8.3 \pm 0.1 \mathrm{~cm}$
(iii) (8.3 cm is) between $7.8(\mathrm{~cm})$ and 8.7 (cm)
ecf from part (ii)
(so f must be) between $384(\mathrm{~Hz})$ and $480(\mathrm{~Hz})$
$410(\mathrm{~Hz}) \leq f \leq 450(\mathrm{~Hz})$
if only the estimated frequency given, accept for 1 mark an answer within the range
(c) (i) electronic
(ii) frequency is (very) high
accept frequency above
20000 (Hz) or audible range
so tuning fork or length of prongs would be very small (1.2 mm)
(d) $\quad 285.7(\mathrm{~Hz})$
accept any correct rounding 286, 290, 300
allow 2 marks for 285
allow 2 marks for correct substitution $0.0035=1 / \mathrm{f}$
allow 1 mark for $T=0.0035 \mathrm{~s}$
allow 1 mark for an answer of 2000

Q21.
(a) (i) 440 (sound) waves produced in one second accept vibrations / oscillations for waves
(ii) 0.773 (metres)
allow 2 marks for an answer that rounds to 0.773
allow 2 marks for an answer of 0.77 خ่ 2
allow 2 marks for an answer of 0.772
allow 1 mark for correct substitution ie $340=440 \times \lambda$
(b) (sound is) louder
do not accept the converse
as amplitude is larger
waves are taller is insufficient
higher pitch / frequency
as more waves are seen
reference to wavelengths alone is insufficient waves are closer together is insufficient

Q22.
(a) (sound waves) which have a frequency higher than the upper limit of hearing for humans
or
a (sound) wave (of frequency) above 20000 Hz
sound waves that cannot be heard is insufficient a wave of frequency 20000 Hz is insufficient
(b) 640
an answer of 1280 gains 2 marks
allow 2 marks for the correct substitution
ie 1600×0.40 provided no subsequent step

$$
\begin{aligned}
& \text { allow } 2 \text { marks for the substitution } \frac{1600 \times 0.80}{2} \\
& \text { provided no subsequent step } \\
& \text { allow } 1 \text { mark for the substitution } 1600 \times 0.80 \text { provided no } \\
& \text { subsequent step } \\
& \text { allow } 1 \text { mark for the identification that time (boat to bed) is } \\
& 0.4
\end{aligned}
$$

(c) any one from:

- pre-natal scanning / imaging
- imaging of a named organ (that is not surrounded by bone), eg stomach, bladder, testicles
accept heart
do not allow brain or lungs (either of these negates a correct answer)
- Doppler scanning blood flow
(d) advantage
any one from:
- (images are) high quality or detailed or high resolution
clearer / better image is sufficient
- (scan) produces a slice through the body
- image can be viewed from any direction
allow images are (always) 3D / 360 ${ }^{\circ}$
- an image can be made of any part (inside the body)
allow whole body can be scanned
- easier to diagnose or see a problem (on the image)
disadvantage
any one from:
- (the X-rays used or scans) are ionising
allow a description of what ionising is
- mutate cells or cause mutations or increase chances of mutations
allow for cells:
DNA / genes / chromosomes / nucleus / tissue
- turn cells cancerous or produce abnormal growths or produce rapidly growing cells
- kill cells
damage cells is insufficient
- shielding is needed
can be dangerous (to human health) unqualified, is
insufficient

Q23.
(a) (i) 20

20000
either order
accept ringed answers in box
(ii) (frequency) above human range accept pitch for frequency
or
(frequency) above $20000(\mathrm{~Hz})$
do not accept outside human range
allow ecf from incorrect value in (a)(i)
(iii) any one from:

- pre-natal scanning
accept any other appropriate scanning use
do not accept pregnancy testing
- removal / destruction of kidney / gall stones
- repair of damaged tissue / muscle
accept examples of repair, eg alleviating bruising, repair scar damage, ligament / tendon damage, joint inflammation
accept physiotherapy
accept curing prostate cancer or killing prostate cancer cells
- removing plaque from teeth
cleaning teeth is insufficient
(b) $7.5 \times 10^{-4}(\mathrm{~m})$
$1.5 \times 10^{3}=2.0 \times 10^{6} \times \lambda$ gains 1 mark
(c) for reflected waves
must be clear whether referring to emitted or detected / reflected waves
if not specified assume it refers to reflected wave
any two from:
- frequency decreased
- wavelength increased
- intensity has decreased
allow amplitude / energy has decreased
allow the beam is weaker

Q24.
(a) the oscillation / vibration (causing the wave)
a movement causes the wave is insufficient
for a transverse wave is perpendicular to the direction of energy transfer accept direction of wave travel
and for a longitudinal wave is parallel to the direction of energy transfer accept direction of wave travel if no marks awarded allow 1 mark for correctly linking perpendicular with transverse and parallel with longitudinal the marks may be scored by the drawing of two correctly labelled diagrams
(b) for radio waves:
accept converse for each mark
are transverse
travel at speed of light / higher speed
have greater frequencies
can travel through vacuum
accept sound waves are not electromagnetic for 1 mark

Q25.
(a) (i) perpendicular accept correct description 1
(ii) light off - no / slow rotation
light on - fast(er) rotation
accept starts rotating
ignore references to energy transfers
(b) one ray drawn from wrist watch and reflected by mirror
accept solid or dashed lines
two rays drawn from wrist watch and reflected by mirror with $\mathrm{i}=\mathrm{r}$ for both rays
judge angles by eye
one ray traced back behind mirror
accept solid or dashed lines
image in correct position

judged by eye

accept image marked where two reflected rays traced back cross behind the mirror
(c) cannot be formed on a screen
accept image formed behind the mirror
or
rays of light seem to come from it but do not pass through it

Q26.
(a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1-2 marks)

There is a basic description of either wave
OR
What happens to either wave when they enter the body. However there is little other detail.

Level 2 (3-4 marks)

There is either:
A clear description of BOTH waves
OR
A clear description as to what happens to BOTH waves inside the body OR
A clear description of ONE of the waves with clear detail as to what happens to either wave inside the body.

Level 3 (5-6 marks)

There is a detailed description of BOTH of the waves

AND

A detailed description as to what happens to EITHER wave inside the body.

Examples of the points made in the response:

Description of an X-ray

- X-rays are electromagnetic waves / part of the electromagnetic spectrum do not allow a description of a property - eg X-rays travel
- X-rays are (very) high frequency (waves) through a vacuum / at the speed of light
- X-rays are (very) high energy (waves)
- X-rays have a (very) short wavelength
- Wavelength (of X-rays) is of a similar size to (the diameter of) an atom
- X-rays are a transverse wave
correct description acceptable - oscillations / vibrations are perpendicular (at 90°) to direction of energy transfer
- X-rays are ionising radiation

Description of ultrasound

- ultrasound has a frequency above 20000 (hertz)
or
ultra sound is above 20000 hertz
- ultrasound is above / beyond the human (upper) limit (of hearing) accept ultrasound cannot be heard by humans
- ultrasound is a longitudinal wave
correct description acceptable - oscillations / vibrations (of particles) are parallel (in same direction) to direction of energy transfer

Statement(s) as to what happens to X-rays inside the human body:

- X-rays are absorbed by bone
- X-rays travel through / are transmitted by tissue / skin

Statement as to what happens to ultrasound inside body:

- ultrasound is (partially) reflected at / when it meets a boundary between two different media
- travel at different speeds through different media
(b) (because the X -rays) are ionising
accept a description of what ionising is
(they will) damage cells
instead of cell, any of these words can be used:
DNA / genes / chromosomes / nucleus
or
mutate cells / cause mutations / increase chances of mutations

or

turn cells cancerous / produce abnormal growths / produce rapidly growing cells
do not accept they can be dangerous (to human health)
do not accept damage to soft tissue
or
kill cells
(c) any one from:

- removal / destruction of kidney / gall stones
- repair of damaged tissue / muscle
accept examples of repair, eg alleviating bruising, repair scar damage, ligament / tendon damage, joint inflammation accept physiotherapy
accept curing prostate cancer or killing prostate cancer cells
- removing plaque from teeth
cleaning teeth is insufficient

Q27.
(a) (i) wavelength
accept frequency
accept speed
(ii) amplitude
accept energy
height is insufficient
(iii) sound
(b) 0.12
allow 1 mark for correct substitution, ie 8×0.015 provided no subsequent step shown
metre per second or m/s or metre/second
do not accept mps
units must be consistent with numerical answers

Q28.
(a) any two from:

- (sound with frequency) above 20000 hertz / 20 kHz
- frequencies above (human) audible range
- (sound) cannot be heard by humans
(b) either
two appropriate points gain 1 mark each
either both pro / con or one of each

```
or
one appropriate point (and) appropriate qualification / amplification
    examples
    other mammals (sufficiently) similar to humans (1)
    so results appropriate (1)
    unethical to experiment on humans (1)
    so it is better to experiment on mice (1)
    knowledge / techniques will benefit humans (1)
    and also other animals (1)
    experiments were justified because ultrasound has proved
    useful (1)
```

(c) examples
allow a wide variety of appropriate responses
publish / tell doctors / the public (1)
...their evidence / results / research / data (1)
valid point (1)
appropriate example / qualification / expansion / etc (1)
carry out more research / tests (1)
...to make sure / check reliability (1)
allow just 'stop using them / ultrasonic waves' for 1 mark only allow using them (only) for industrial purposes for 1 mark only

Q29.
(a) (i) bat(s)
(ii) any example in the inclusive range $5 \leftrightarrow 29 \mathrm{~Hz}$ / hertz appropriate number and unit both required
(b) (i) A, C, D
all three required and no other
(ii) D, E
both required and no other
(c) sound cannot travel through a vacuum / (empty) space / free space accept there is no medium (for the sound to travel through) do not accept there is no air (for the sound to travel through)
(because) there is / are nothing / no particles to vibrate accept because there is / are nothing / no particles between them and the source (of the sound)

Q30.
(a) (i) J and L
both required, either order
(ii) K
(iii) \mathbf{L}
highest frequency
reason does not score if L not chosen
accept most waves (on screen)
do not accept frequency above $20000(\mathrm{~Hz})$
do not accept cannot hear it
(b) transmitter
detector
computer
all three in correct order
allow 1 mark for one correct

Q31.
(a) (i) 3
(ii) 30000 or $10000 \times$ their (a)(i) correctly calculated
(iii) any two from:

- frequency is above $20000(\mathrm{~Hz})$
accept the frequency is 30000
- frequency is above the upper limit of audible range
- upper limit of audible range equals $\underline{20000(H z)}$ ignore reference to lower limit
- it is ultrasound/ultrasonic
(b) (i) wave (partially) reflected
at crack to produce \mathbf{A} and end of bolt to produce \mathbf{B} accept at both ends of the crack
(ii) $0.075(\mathrm{~m})$ allow 2 marks for time $=0.0000125$ allow 1 mark for time = 0.000025 answers 0.15 or 0.015 or 0.09 gain 2 marks answers 0.18 or 0.03 gain 1 mark the unit is not required but if given must be consistent with numerical answer for the available marks

Q32.
(a) letter C clearly marking a compression accept C at any point in a compression if more than one letter C marked all must be correct
(b) (i) straight continuous line drawn from loudspeaker to metal to sound sensor judge by eye
angle $\mathrm{I}=$ angle R
judge by eye
ignore any arrows on lines
(ii) less sound reflected
accept energy for sound
or
(some) sound passes through the glass
accept (some) sound absorbed by the glass
(iii) makes the sound louder
(iv) $v=f \times \lambda$

340
allow 1 mark for correct substitution ie 850×0.4
provided no subsequent step shown
(c) echo
(d) (i) from 250 Hz to 750 Hz
(ii) curtains reduce (percentage of) sound reflected more (than carpet) accept curtains absorb more sound (than carpet)
for all frequencies (shown)
accept for both marks an answer in terms of walls having a larger (surface) area to reflect sound and curtains reducing the amount of reflected sound more (than carpet) answers less noisy or walls / curtains have a larger area gain 1 mark only do not accept curtains are cheaper

Q33.

(a) $10600(\mathrm{~Hz})$
accept 10.6 kHz
(b) $3000(\mathrm{~Hz})$
allow 1 mark for a line drawn to show greatest movement (allow only if frequency is between 2800 and 3200) accept other indication of correctly using the graph

(c) (No)
no marks for just the ticked box
reasons can score even if yes is ticked
(human hearing) range is $20-20000(\mathrm{~Hz})$
accept (most) people hear up to $20000(\mathrm{~Hz}) / 20 \mathrm{kHz}$
any one from:

- range on graph is within this range
- range on graph starts after 20 Hz
- range on graph is from to $200-10600(\mathrm{~Hz})$
- range on graph finishes before 20000 Hz
(d) reliability
this answer only
(e) only 1 variable affects dependent variable / size of movement accept 'results' for 'size of movement'
or
there is only one independent variable
fair test is insufficient
do not accept to control the experiment
or
to be able to compare (effect of different frequencies)

Q34.
(a) vibrate
allow move more (vigorously) but not just move
dirt / muck / grit / rust / dust etc.
do not accept bacteria
(b) any one medical use eg
ignore incorrect biological detail

- scanning unborn babies
- destroying (kidney) stones
(c) (i) 2
(ii) C

Q35.
(a) sound / mechanical / longitudinal (wave)
any one from:

- above 20000 hertz / 20kHz
- above (human) audible range
- cannot be heard by humans
(b) either
particles / molecules / fluid vibrate(s) (1)
(and) knock particles of dirt off the jewellery (1)
or
by the process of cavitation (1)
accept 'formation and collapse of tiny bubbles'
which breaks up / releases dirt from the surface (1)
(c) either both pro
or both con
or one of each

either

two appropriate points gain 1 mark each
or
one appropriate point (and) appropriate qualification / amplification examples
other mammals (sufficiently) similar to humans (1)
so results appropriate (1)
unethical to experiment on humans (1)
so it is better to experiment on mice (1)
knowledge / techniques will benefit humans (1)
and also other animals (1)
experiments were justified because ultrasound has proved useful (1)

