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Thermodynamic Systems (HL)

Change in Internal Energy

The change in the internal energy ∆U  of an object is intrinsically related to a change in its temperature

∆T
∆U ∝ ∆T

When a container containing gas molecules is heated up, the molecules begin to move around faster,

increasing their kinetic energy

In a solid, where the molecules are tightly packed, molecules begin to vibrate more as they are

heated

Molecules in liquids and solids have both kinetic and potential energy because they are close

together and bound by intermolecular forces

However, the molecules in an ideal gas are assumed to have no intermolecular forces

This means they do not possess potential energy, only kinetic energy

The (change in) internal energy of an ideal gas is equal to:

∆U =
3
2 NkB∆T

Where

∆U  = change in internal energy (J)

kB  = Boltzmann constant

∆T  = change in temperature (K)

N  = number of particles

Another form of this equation related to the translational kinetic energy of the particles is

∆U =
3
2 nR∆T

Where:

n  = number of moles of gas (mol)

R  = molar gas constant
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Worked example

A student suggests that, when an ideal gas is heated from 50°C to 150°C, the internal energy of the

gas is tripled.

State and explain whether the student’s suggestion is correct.

Answer:

The change in internal energy of an ideal gas is directly proportional to its change in temperature

∆U ∝ ∆T

The temperature change is the thermodynamic temperature i.e. Kelvin

The temperature change in degrees (from 50°C to 150°C) increases by three times

The temperature change in Kelvin is:

50°C + 273.15 = 323.15 K

150°C + 273.15 = 423.15 K

423.15
323.15 = 1.3

The temperature change, in Kelvin, does not increase by three times, therefore, neither does the

internal energy

Hence, the student is incorrect
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Worked example

An ideal gas expands at constant pressure. The following data are available:

amount of gas = 126 mol

initial temperature of gas = −23.0°C

�nal temperature of gas = +27.0°C

Determine the change in internal energy of the gas during this expansion.

Answer:

The change in internal energy of a gas is equal to

∆U =
3
2 nR∆T

Where

Amount of gas, n  = 126 mol

Gas constant, R  = 8.31 J mol  K

Change in temperature, ∆T  = 27 − (−23) = 50°C

∆U =
3
2 ×126×8.31×50

∆U = 7.85 × 104 J

−1 −1
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Work Done by a Gas

When a gas expands, it does work on its surroundings by exerting pressure on the walls of the

container it's in

For a gas inside a piston, the force exerted by the gas pushes the piston outwards

As a result, work is done on the piston by the gas

Alternatively, if an external force is applied to the piston, the gas will be compressed

In this case, work is done on the gas by the piston

Assuming the volume of gas is kept at constant pressure, this means the force F exerted by the gas on

the piston is equal to:

p =
F
A ⇒ F = pA

Where A = cross-sectional area of the cylinder (m )

The de�nition of work done is:

W = Fs

Where s = displacement in the direction of force (m)

The displacement s of the gas multiplied by the cross-sectional area A is equal to the increase in

volume ΔV of the gas:

W = pAs

This gives the equation for the work done when the volume of a gas changes at constant pressure:

W = p∆V

Where:

2

W = work done (J)

p = pressure of the gas (Pa)

ΔV = change in the volume of the gas (m )

This equation assumes that the surrounding pressure does not change as the gas expands

This is true if the gas is expanding against the pressure of the atmosphere, which changes very

slowly
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p-V diagrams

Pressure-volume (p-V) diagrams are often used to represent changes in the state of a gas in

thermodynamic processes

When a gas expands (at constant pressure) work done is positive

Volume increases +ΔV

Work is done by the gas +W

When a gas is compressed (at constant pressure) work done W is negative

Volume decreases −ΔV

Work is done on the gas −W

When both the volume and pressure of gas changes

The work done can be determined from the area under a p-V diagram

https://www.savemyexams.com/?utm_source=pdf
https://www.savemyexams.com/


Worked example

When a balloon is in�ated, its rubber walls push against the air around it.

Calculate the work done when the balloon is blown up from 0.015 m  to 0.030 m .

Atmospheric pressure = 1.0 × 10  Pa.

Answer:

The work done by a gas is equal to

W = p∆V

Where the change in volume is

ΔV = �nal volume − initial volume = 0.030 − 0.015 = 0.015 m

Therefore, work done is

W = (1.0 × 10 ) × 0.015 = 1500 J

3 3

5

3

5
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(a)

(b)

Worked example

An ideal gas is compressed, as shown on the graph below. 

For this change, state and explain whether work is done on the gas or by the gas

Determine the value of the work done and state whether it is positive or negative

Answer:

(a)

The volume decreases, therefore, work is done on the gas

(b)

The work done is equal to the area under the p-V diagram
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W =
1
2 ( )600×103 ( )400×10−6 + ( )300×103 ( )400×10−6

W = −240 J

When volume decreases, the work done is negative

https://www.savemyexams.com/?utm_source=pdf
https://www.savemyexams.com/


First Law of Thermodynamics (HL)

The First Law of Thermodynamics

The �rst law of thermodynamics is based on the principle of conservation of energy

When energy is put into a gas by heating it or doing work on it, its internal energy must increase:

energy supplied by heating = change in internal energy + work done on the system

The �rst law of thermodynamics is therefore de�ned as:

Q = ∆U + W

Where:

Q = energy supplied to the system by heating (J)

ΔU = change in internal energy (J)

W = work done by the system (J)

The �rst law of thermodynamics applies to all situations, not just to gases

There is an important sign convention used for this equation

A positive value for internal energy (+ΔU) means:

The internal energy ΔU increases

Heat Q is added to the system (+Q)

Work W is done on the system (–W)

A negative value for internal energy (−ΔU) means:

The internal energy ΔU decreases

Heat Q is taken away from the system (–Q)

Work W is done by the system (+W)

Graphs of Constant Pressure & Volume

Graphs of pressure p against volume V can provide information about the work done and internal

energy of the gas

The work done is represented by the area under the line

A constant pressure process is represented as a horizontal line

If the volume is increasing (expansion), work is done by the gas (on the surroundings) and internal

energy decreases (ΔU = q − W)

If the arrow is reversed and the volume is decreasing (compression), work is done on the gas and

internal energy increases (ΔU = q + W)

The volume of the gas is made smaller, so more collisions between the molecules of the gas and

the walls of the container occur. This creates a higher pressure. 

A constant volume process is represented as a vertical line

In a process with constant volume, the area under the curve is zero

Therefore, no work is done when the volume stays the same
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Worked example

The volume occupied by 1.00 mol of a liquid at 50°C is 2.4 × 10  m . When the liquid is vaporised at an

atmospheric pressure of 1.03 × 10  Pa, the vapour occupies a volume of 5.9 × 10  m .

The latent heat to vaporise 1.00 mol of this liquid at 50°C at atmospheric pressure is 3.48 × 10  J.

For this change of state, determine the increase in internal energy ΔU of the system.

Answer:

Step 1: List the known quantities

Thermal energy, Q = 3.48 × 10  J

Atmospheric pressure, p = 1.03 × 10  Pa

Initial volume = 2.4 × 10  m

Final volume = 5.9 × 10  m

Step 2: Calculate the work done W

The work done by a gas at constant pressure is

W = p∆V

Where the change in volume is: 

ΔV = �nal volume − initial volume = (5.9 × 10 ) − (2.4 × 10 ) = 0.059 m

Since the volume of the gas increases, the work done is positive

W = (1.03 × 10 ) × 0.059 = 6077 = 6.08 × 10  J

W = +6.08 × 10  J

Step 3: Substitute the values into the equation for the �rst law of thermodynamics

From the �rst law of thermodynamics:

∆U = Q − W

ΔU = (3.48 × 10 ) − (6.08 × 10 ) = 28 720 J

−5 3

5 −2 3

4

4

5
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−2 3

−2 −5 3
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3
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Entropy (HL)

Entropy

The entropy S of a given system is a measure of the number of possible arrangements of the particles

and their energies

In other words, it is a measure of how disordered a system is

When a system becomes more disordered, its entropy will increase

The order of entropy for the di�erent states of matter from most disordered to least is:

gas > liquid > solid

The entropy of a substance changes during a change in state

Entropy increases when a substance melts (solid → liquid) or boils (liquid → gas) 

Increasing the temperature of a substance causes the particles to vibrate more

The particles in a gas can now freely move around and are far apart from each other

The entropy increases as the particles become more disordered

Similarly, entropy decreases when a substance condenses (gas → liquid) or freezes (liquid → solid)

The particles are brought together and become arranged more regularly

The particles become less able to move as they become more ordered

There are fewer ways of arranging the energy, hence the entropy decreases

Entropy can also increase when 

A solid dissolves in a solvent

A gas di�uses in a container

In both cases, entropy increases because:

The particles become more spread out

There is an increase in the number of ways of arranging the energy
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Worked example

A freezer door is opened while switched on and placed in a sealed room.

The entropy of the room

A.  equals zero

B.  increases

C.  decreases

D.  does not change

Answer: B

A freezer is a heat pump, so thermal energy is transferred from inside the freezer and released at

the back of the freezer

While it runs with the door open, the internal energy of the contents of the freezer decreases

The entropy of the contents of the freezer decreases because they are colder

But the entropy of the room increases because it is hotter

Real Isolated Systems

In thermodynamics, the distinction between reversible and irreversible processes at the macroscopic

level is very important

A reversible process is de�ned as:

A process where there is no overall change in entropy as the system and its surroundings

are returned to their original states

Whereas, an irreversible process is de�ned as:

A process which results in an increase in entropy as the system and its surroundings

cannot return to their original states 

Processes in real isolated systems are almost always irreversible and consequently, the entropy of a

real isolated system always increases
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Non-Isolated Systems

While the entropy of an isolated system must always increase, the entropy of a non-isolated system

can decrease

An isolated system is de�ned as

A system in which neither matter nor energy can be transferred in or out

Whereas in a non-isolated system, matter and energy can be transferred in or out

In other words, a non-isolated system can be thought of as one which is part of a larger isolated

system

This means that the entropy of a non-isolated system can decrease locally, but this is compensated by

an equal, or greater increase in the entropy of the surroundings
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Calculating Changes in Entropy (HL)

Calculating Changes in Entropy

At a constant temperature T, the change in entropy on a macroscopic level can be calculated using the

equation

∆S =
∆Q
T

Where:

ΔS = change in entropy (J K )

ΔQ = heat given to or removed from the system (J)

T = temperature of the system (K)

When heat is given to a system (ΔQ = positive), entropy increases

∆S = +
∆Q
T

∆Q > 0

∆S > 0

When heat is removed from a system (ΔQ = negative), entropy decreases

∆S = −
∆Q
T

∆Q < 0

∆S < 0

For a reversible process that returns the system to its original state, entropy is constant

∆Q = 0

∆S = 0

Entropy & Microstates

The entropy of a system, on a microscopic level, can be calculated using the equation

S = kB ln Ω

Where:

S = entropy of a system of microscopic particles (J K )

k  = the Boltzmann constant

Ω = the number of possible microstates of the system

−1

−1

B
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Similarly, the change in entropy when the number of microstates increases from Ω1  to Ω2  is given by 

∆S = kB ln
Ω2

Ω1

A microstate describes one state or possible arrangement of the particles in the system 

A state can be de�ned by any microscopic or macroscopic property that is known about the

system e.g. positions or velocities of molecules, energy, volume etc.

An example that helps illustrate this is a two-compartment container which holds N distinguishable

particles (i.e. each particle can be identi�ed individually)

Initially, all N particles are sealed in one of two compartments

When the particles are con�ned to one compartment, we know the location of all the particles

Therefore, the number of microstates (possible arrangements) in the initial volume is

Ω1 = 1N = 1
It is always equal to 1, for example, when N = 2 or N = 4:  Ω1 = 12 = 14 = 1

Once the partition is removed, the particles can spread out and occupy either one of the two

compartments

The number of microstates (possible arrangements) in the �nal volume is Ω2 = 2N

For example, when N = 2, the particles can be arranged 2  = 4 di�erent ways

Or, when N = 4, the particles can be arranged 2  = 16 di�erent ways

The change in the entropy is therefore:

∆S = kB ln
⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

Ω2

Ω1
= kB ln

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

2N

1N

∆S = kB ln ( )2N

It follows that the number of possible microstates can be equated to macroscopic properties of the

gas, such as its volume increasing from V to 2V

As the gas expands, the space it can occupy doubles, hence it gains an amount of entropy equal to:

∆S = NkB ln ( )2V − NkB ln ( )V

∆S = NkB ln
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

2V
V = NkB ln ( )2

This gives the same result as above:

∆S = kB ln ( )2N

2

4
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Second Law of Thermodynamics (HL)

Second Law of Thermodynamics

The second law of thermodynamics states

In every process, the total entropy of an isolated system always increases

In the case of a non-isolated system, it can be generalised to say that the entropy of the Universe must

increase

There are two alternative forms of this law which have slightly more practical applications

The Clausius form of the second law states:

Thermal energy cannot spontaneously transfer from a region of lower temperature to a

region of higher temperature

The use of the word 'spontaneously' is the key here, as heat pumps are an example of a way that heat

can be transferred from a colder region to a hotter one by doing work

This leads to the Kelvin form of the second law, which states

When extracting energy from a heat reservoir, it is impossible to convert it all into work

The di�erent forms of the second law have signi�cant implications for real-world applications, such as

heat engines
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Thermodynamic Processes (HL)

Thermodynamic Processes

The four main thermodynamic processes are

Isovolumetric ( )W = 0
Isobaric  ( )∆p = 0
Isothermal ( )∆T = 0
Adiabatic  ( )∆Q = 0

Constant pressure (isobaric)

An isobaric process is de�ned as:

A process in which no change in pressure occurs

This occurs when gases are allowed to expand or contract freely during a change in temperature

When there is a change in volume ΔV at a constant pressure p, work done W is equal to

W = p∆V

From the �rst law of thermodynamics:

Q = ∆U + W

Q = ∆U ± p∆V

The ± sign re�ects whether work has been done on or by the gas as a result of the change in volume
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Constant volume (isovolumetric)

An isovolumetric process is de�ned as:

A process where no change in volume occurs and the system does no work

If there is no change in volume, then there is no work done on or by the gas, so W = 0
Therefore, from the �rst law of thermodynamics:

Q = ∆U + W = ∆U + 0

Q = ∆U

Constant temperature (isothermal)

An isothermal process is de�ned as:

A process in which no change in temperature occurs

If the temperature does not change, then the internal energy of the gas will not change, so ∆U = 0
Therefore, from the �rst law of thermodynamics:

Q = ∆U + W = 0 + W

Q = W

Constant thermal energy (adiabatic)

An adiabatic process is de�ned as:

A process where no heat is transferred into or out of the system

If there is no heat entering or leaving the system then Q = 0
Therefore, from the �rst law of thermodynamics:

Q = ∆U + W = 0

W = −∆U

This means that all the work done is at the expense of the system's internal energy

Hence, an adiabatic process will usually be accompanied by a change in temperature
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Entropy in Thermodynamic Processes

At a constant temperature T, the change in entropy is related to heat by

∆S =
∆Q
T

When heat is gained by a system ( )∆Q > 0 , entropy increases ( )∆S > 0
When heat is lost from a system ( )∆Q < 0 , entropy decreases ( )∆S < 0
For a reversible process ( )∆Q = 0  that returns the system to its original state ( )∆S = 0

Process Heat gained or lost, ΔQ Change in entropy, ΔS

Isothermal

Expansion

∆Q > 0

Heat gained = work done by

gas

∆S > 0

Increases

Compression

∆Q < 0

Heat lost = work done on

gas

∆S < 0

Decreases
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Isobaric

Expansion

∆Q > 0

Heat gained = increase in

internal energy + work done

by gas 

∆S > 0

Increases

Compression

∆Q < 0

Heat lost = decrease in

internal energy + work done

on gas

∆S < 0

Decreases

Isovolumetric

Pressure rise

∆Q > 0

Heat gained due to

temperature rise

∆S > 0

Increases

Pressure drop

∆Q < 0

Heat lost due to

temperature drop

∆S < 0

Decreases

Adiabatic

Expansion

∆Q = 0

Pressure & temperature

decrease with no heat

gained or lost

∆S = 0

No change

Compression

∆Q = 0

Pressure & temperature

increase with no heat gained

or lost

∆S = 0

No change
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Worked example

A quantity of energy Q is supplied to three ideal gases, X, Y and Z.

Gas X absorbs Q isothermally, gas Y isovolumetrically and gas Z isobarically.

Complete the table by inserting the words ‘positive’, ‘zero’ or ‘negative’ for the work done W, the

change in internal energy ΔU and the temperature change ΔT for each gas.

W ∆U ∆T

X

Y

Z

Answer:

X: Isothermal = constant temperature, no change in internal energy

Temperature:  ∆T = 0
Internal energy:  ∆T ∝ ∆U , so, ∆U = 0
Work done:  Q = ∆U + W ⇒ Q = +W

Y: Isovolumetric = constant volume, no work done

Work done: W ∝ ∆V , so,W = 0
Internal energy:  Q = ∆U + W ⇒ Q = +∆U
Temperature:  ∆T ∝ ∆U , so, ∆T > 0

Z: Isobaric = constant pressure 

Work done:  ∆p = 0, so W = p∆V , so W > 0
Internal energy:  Q = ∆U + W , so ∆U > 0
Temperature:  ∆T ∝ ∆U , so ∆T > 0

W ∆U ∆T

X positive 0 0

Y 0 positive positive
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Z positive positive positive
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(a)

(b)

Worked example

A heat engine operates on the cycle shown in the pressure-volume diagram. One step in the cycle

consists of an isothermal expansion of an ideal gas from state A of volume V to state B of volume 2V.  

On the graph, complete the cycle ABCA by drawing curves to show

an isovolumetric change from state B to state C

an adiabatic compression from state C to state A

State and explain at which point in the cycle ABCA the entropy of the gas is the largest.

Answer:

(a)

Isovolumetric = constant volume, no work done

Next step is a compression (where pressure increases), so this step should involve a pressure

drop

Hence, B to C: line drawn vertically down

Adiabatic = no heat supplied or removed, compression = work is done on the gas, volume

decreases

Hence, C to A: line curves up to meet A
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(b) 

Entropy and heat (at a constant T) are related by

∆S =
∆Q
T

From state A to state B:

In an isothermal expansion, entropy increases

Because T = constant but the volume increases so work is done by gas, ΔQ > 0 so ΔS > 0

From state B to state C:

In an isovolumetric change where pressure decreases, entropy decreases

Because temperature decreases, so energy has been removed, ΔQ < 0 so ΔS < 0

From state C to state A:

In an adiabatic compression, entropy is constant

Because it is an adiabatic process, ΔQ = 0 so ΔS = 0

Therefore, entropy is greatest at B
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Adiabatic Processes

Adiabatic processes in monatomic ideal gases can be modelled by the equation

pV
5
3 = constant

Where:

p = pressure of the gas (Pa)

V = volume occupied by the gas (m )

This equation can be used for calculating changes in pressure, volume and temperature for monatomic

ideal gases

p1V1

5
3 = p2V2

5
3

Where:

p1  = initial pressure (Pa)

p2  = �nal pressure (Pa)

V1  = initial volume (m )

V2  = �nal volume (m )

3

3

3
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Worked example

An ideal monatomic gas expands adiabatically from a state with pressure 7.5 × 10  Pa and volume 1.8 ×

10  m  to a state of volume 4.2 × 10  m .

Calculate the new pressure of the gas.

Answer:

For an ideal monatomic gas undergoing an adiabatic change:

pV
5
3 = C

p1V1

5
3 = p2V2

5
3

Where:

Initial pressure, p1  = 7.5 × 10  Pa

Final pressure = p2
Initial volume, V1  = 1.8 × 10  m

Final volume, V2  = 4.2 × 10  m

p2 = p1
⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

V1

V2

5
3

p2 = ( )7.5×105 ×
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

1.8×10−3

4.2×10−3

5
3

New pressure: p2  = 1.8 × 10  Pa

5

−3 3 −3 3

5

−3 3

−3 3

5
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Worked example

An ideal monatomic gas is compressed adiabatically from a state with volume 3.1 × 10  m  and

temperature 590 K to a state of volume 2.1 × 10  m .

Calculate the new temperature of the gas.

Answer:

For an ideal monatomic gas undergoing an adiabatic change:

pV
5
3 = C

p1V1

5
3 = p2V2

5
3

From the ideal gas law:

pV = nRT ⇒ p =
nRT
V

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

nRT1

V1
V1

5
3 =

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

nRT2

V2
V2

5
3

T1V1

2
3 = T2V2

2
3

Where:

Initial temperature, T1  = 590 K

Final temperature = T2
Initial volume, V1  = 3.1 × 10  m

Final volume, V2  = 2.1 × 10  m

T2 = T1

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

V1

V2

2
3

T2 = 590 ×
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

3.1×10−3

2.1×10−3

2
3

New temperature:  T2  = 765 K

−3 3

−3 3

−3 3

−3 3
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Heat Engines (HL)

Heat Engines

A heat engine is a device that converts thermal energy into mechanical work

Heat engines operate through a series of thermodynamic processes which form a closed cycle

A closed cycle is one in which the system returns to its initial state

A simple heat engine consists of a gas in a cylinder with a piston

The steps in the operation of a cyclic heat engine process are:

1. Extract heat from a hot reservoir

A hot reservoir (a source of thermal energy) at a high temperature TH  transfers heat QH  into the

engine

2. Use some of the extracted heat to perform work

The gas does mechanical work as it expands which pushes the piston out

3. Release excess heat into a cold reservoir

The gas is allowed to cool at constant volume, meanwhile, heat QC  is released to the surroundings

Some of the energy transferred into the engine is released into a cold reservoir (a sink for excess

heat) at a lower temperature TC
4. Repeat cycle

Once the heat has been extracted, the piston is pushed down to compress the gas back to its

original state

The process can then be repeated as many times as needed, continuously converting heat into

mechanical work 

For a cyclic heat engine process, the p-V diagram will form a closed loop

The area inside the loop is equal to the net work done during one cycle

The net work done by the engine is:

∆Wout = QH − QC

Where:

∆Wout  = useful work output of the heat engine (J)

QH  = heat transferred from hot reservoir to engine (J)

QC  = heat transferred from engine to cold reservoir (J)
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E�ciency of Heat Engines

The goal of a heat engine is to transfer thermal energy into useful mechanical work as e�ciently as

possible

The thermodynamic e�ciency of a heat engine can be calculated using

e�ciency = 
useful work output
total energy input

η =
Wout

QH
=

( )
QH − QC

QH

η = 1 −
QC

QH

Where:

η  = e�ciency of a heat engine

Wout  = useful work output (J)

QH  = total energy input from the hot reservoir (J)

QC  = energy lost to the cold reservoir (J)
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The Carnot Cycle (HL)

The Carnot Cycle

A thermodynamic system that runs at its greatest possible e�ciency follows a cycle called the Carnot

cycle

The Carnot cycle is an idealised and reversible process

It consists of four stages:

1.  Isothermal expansion

The gas absorbs heat QH  from a hot reservoir at temperature TH
Work is done by the gas as it expands i.e. volume increases, temperature is constant ( )∆T = 0
Work done by the gas = heat gained QH

2.  Adiabatic expansion

The gas continues to expand

The gas does work on the surroundings as its volume increases and pressure decreases

The gas cools down from TH  to TC , but no thermal energy is transferred ( )∆Q = 0
3.  Isothermal compression

The gas is compressed and transfers heat QC  to a cold reservoir at temperature TC
Work is done on the gas as it is compressed i.e. volume decreases, temperature is constant 

( )∆T = 0
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Work done on the gas = heat lost QC
4.  Adiabatic compression

The gas continues to be compressed

Work is done on the gas as its volume decreases and pressure increases

The gas heats up from TC  to TH , but no thermal energy is transferred  ( )∆Q = 0
At the end of the fourth stage, the gas has returned to its original state and the cycle can be repeated

as many times as needed

As the e�ciency of a thermodynamic system increases, the di�erence between the temperatures of

the hot and cold reservoirs increases

The maximum theoretical e�ciency of a heat engine using the Carnot cycle is:

ηC = 1 −
TC

TH
Where:

ηC  = maximum theoretical e�ciency (Carnot cycle only)

TC  = temperature in the cold reservoir (K)

TH  = temperature in the hot reservoir (K)
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Worked example

In an idealised heat engine, the hot and cold reservoirs are held at temperatures of TH  and TC
respectively.

Using the equation for the change in entropy

∆S =
∆Q
T

Show that the maximum theoretical e�ciency of a heat engine is given by

ηC = 1 −
TC

TH
Answer:

Step 1: Determine the change in entropy during isothermal expansion

In isothermal expansion (AB):  the gas absorbs heat QH  from a hot reservoir at temperature TH
Therefore, the increase in entropy is:

∆SAB =
QH

TH
Step 2: Determine the change in entropy during isothermal compression

In isothermal compression (CD):  the gas transfers heat QC  to a cold reservoir at temperature TC
Therefore, the decrease in entropy is:

∆SCD = −
QC

TC

Step 3: Consider the net change in entropy over the cycle
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During adiabatic expansion (BC) and compression (DA), entropy does not change as there is no

thermal energy gained or lost

∆SBC = ∆SDA = 0

We know that the overall entropy of the system does not change in a cyclic process, therefore

∆S = ∆SAB + ∆SBC + ∆SCD + ∆SDA

∆S =
QH

TH
+ 0 +

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

−
QC

TC
+ 0 = 0

QH

TH
=

QC

TC
⇒

QC

QH
=

TC

TH
Step 4: Substitute the expression into the equation for the e�ciency of a heat engine

The e�ciency of a heat engine is given by:

η =
useful work
input energy =

W
QH

Where useful work is W = QH − QC
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η =
QH − QC

QH
= 1 −

QC

QH

Combining with the expression derived above gives:

ηC = 1 −
TC

TH
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Worked example

An engineer designs a heat engine that has an inlet temperature of 500 K and an outlet temperature of

300 K. The engineer claims that 100 kJ of thermal energy �ows out of the hot reservoir and 25 kJ of

thermal energy �ows into the cold reservoir.

Determine, with reference to the second law of thermodynamics, whether this engine is

thermodynamically possible.

Answer:

Step 1: Determine the e�ciency of the proposed engine

The e�ciency of this engine would be

η =
W
QH

=
QH − QC

QH
= 1 −

QC

QH

Where:

Heat transferred in, QH  = 100 kJ

Heat transferred out, QC  = 25 kJ

E�ciency = 1 −
25
100  = 0.75 = 75%

Step 2: Determine the maximum theoretical (Carnot) e�ciency of the proposed engine

A Carnot engine operating between the same temperatures would have an e�ciency of

ηC = 1 −
TC

TH
Where:

Inlet temperature, TH  = 500 K

Outlet temperature, TC  = 300 K

Carnot e�ciency:  ηC = 1 −
300
500  = 0.4 = 40%

Step 3: Discuss the proposed engine in relation to the second law

The Clausius form of the second law states: it is impossible for heat to �ow from a cooler body to a

hotter body without performing work

This law sets an upper limit on the maximum possible e�ciency of the transfer of thermal energy to

mechanical energy in a heat engine

The maximum possible e�ciency of the proposed engine is 40%, but the engineer is proposing

an e�ciency of 75% i.e. an e�ciency greater than the Carnot e�ciency

This violates the Clausius form of the second law, hence the proposed engine is impossible
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