

Scalars & Vectors

Contents

- ✤ Scalar & Vector Quantities
- ★ Combining & Resolving Vectors
- ✤ Scale Diagrams

Scalar & Vector Quantities

Scalar & Vector Quantities

- A scalar is a quantity which only has a magnitude (size)
- A vector is a quantity which has both a magnitude and a direction
- For example, if a person goes on a hike in the woods to a location which is a couple of miles from their starting point
 - As the crow flies, their **displacement** will only be a few miles but the **distance** they walked will be much longer
- Distance is a scalar quantity
 - This is because it describes how an object has travelled overall, but not the direction it has travelled in
- Displacement is a vector quantity
 - This is because it describes how far an object is from where it started and in what direction
- Some common scalar and vector quantities are shown in the table below:

Quantity	Туре	Has Magnitude?	Has Direction?	Example Units	Examples
Distance	Scalar	Ves	× No	meters (m)	5 m
Displacement	Vector	Ves	Yes	meters (m)	5 m east
Speed	Scalar	Ves Yes	× No	meters per second (m/s)	20 m/s
Velocity	Vector	Ves Yes	Ves 🗹	meters per second (m/s)	20 m/s north
Mass	Scalar	Ves	× No	kilograms (kg)	10 kg
Force	Vector	Ves	Yes	newtons (N)	50 N downwards
Time	Scalar	Ves	× No	seconds (s)	10 s
Acceleration	Vector	Ves Yes	Ves 🗹	meters per second ² (m/s ²)	3 m/s ² to the left
Energy	Scalar	Ves	× No	joules (J)	100 J
Momentum	Vector	Ves	Ves	kg·m/s	15 kg·m/s forward
Temperature	Scalar	Ves Yes	× No	degrees Celsius (°C), kelvin (K)	25°C

Scalars and Vectors Table

Representing Vectors

- Vectors are represented by an arrow
 - The arrowhead indicates the direction of the vector
 - The length of the arrow represents the magnitude
- **Component** vectors are sometimes drawn with a dotted line and a **subscript** indicating horizontal or vertical
 - For example, F_x is the horizontal component and F_y is the vertical component of the force F

Combining & Resolving Vectors

Combining & Resolving Vectors

- Vectors can be changed in a variety of ways, such as
 - Combining through vector addition or subtraction
 - Combining through vector **multiplication**
 - Resolving into **components** through trigonometry

Combining Vectors

- Vectors can be combined by adding or subtracting them to produce the resultant vector
 The resultant vector is sometimes known as the 'net' vector (e.g. the net force)
- There are two methods that can be used to combine vectors: the **triangle method** and the **parallelogram method**

Triangle method

- To combine vectors using the triangle method:
 - Step 1: link the vectors head-to-tail
 - Step 2: the resultant vector is formed by connecting the tail of the first vector to the head of the second vector

Parallelogram method

- To combine vectors using the parallelogram method:
 - Step 1: link the vectors tail-to-tail
 - Step 2: complete the resulting parallelogram
 - Step 3: the resultant vector is the diagonal of the parallelogram

Vector Multiplication

- The product of a scalar and a vector is **always** a vector
- For example, consider the scalar quantity mass m and the vector quantity acceleration \vec{a}
- The product of mass m and acceleration $ec{a}$ gives rise to a vector quantity force $ec{F}$

$$\vec{F} = m \times \vec{a}$$

- For another example, consider the scalar quantity mass m and the vector quantity velocity \vec{V}
- The product of mass m and velocity \vec{v} gives rise to a vector quantity **momentum** \vec{p}

$$\vec{p} = m \times \vec{v}$$

Resolving Vectors

- Two vectors can be represented by a single resultant vector
 - Resolving a vector is the opposite of adding vectors
- A single resultant vector can be resolved
 - This means it can be represented by two vectors, which in combination have the same effect as the original one

Force as a Vector

- In physics, vectors appear in many different topic areas
 - Specifically, vectors are often combined and resolved to solve problems when considering motion, forces, and momentum
- Forces vector diagrams are often represented by free-body force diagrams
- The rules for drawing a free-body diagram are the following:
 - Rule 1: Draw a point in the centre of mass of the body
 - **Rule 2:** Draw the body free from contact with any other object
 - **Rule 3**: Draw the forces acting on that body using vectors with length in proportion to its magnitude
 - Rule 4: Draw the tail of the vector from the centre of mass and use the tip to indicate the direction

Forces on an Inclined Plane

- A common scenario is an object on an inclined plane
- An inclined plane, or a slope, is a flat surface tilted at an angle, θ
- Inclined slope problems can be simplified by considering the components of the forces as **parallel** or perpendicular to the slope
- The weight (W = mg) of the object is always directed vertically downwards
- On the inclined slope, weight can be split into the following components:

Perpendicular to the slope: $\checkmark W = mg \cos \theta$

Parallel to the slope: $\nabla W = mg \sin \theta$

- The normal (or reaction) force R is always vertically upwards, or perpendicular to the surface
- If there is **no friction**, the parallel component of weight, $mg \sin \theta$, causes the object to move down the slope
- If the object is **not moving** perpendicular to the slope, the normal force is $R = mg \cos \theta$

Equilibrium

- Coplanar forces can be represented by vector triangles
- Forces are in equilibrium if an object is either
 - At rest
 - Moving at constant velocity
- In equilibrium, coplanar forces are represented by closed vector triangles
 - The vectors, when joined together, form a closed path
- The most common forces on objects are
 - Weight
 - Normal reaction force
 - Tension (from cords and strings)
 - Friction
- Ascred • The forces on a body in equilibrium are demonstrated below:

Scale Diagrams

Scale Diagrams

- There are two methods that can be used to combine or resolve vectors
 - Calculation if the vectors are perpendicular
 - Scale drawing if the vectors are not perpendicular
- Calculating vectors using a scale drawing involves drawings the lengths and angles of the vectors accurately using a sharp pencil, ruler and protractor
- When two vectors are **not** at right angles, the resultant vector can be calculated using a scale drawing
 - **Step 1:** Link the vectors head-to-tail if they aren't already
 - Step 2: Draw the resultant vector using the triangle or parallelogram method
 - Step 3: Measure the length of the resultant vector using a ruler
 - Step 4: Measure the angle of the resultant vector (from North if it is a bearing) using a protractor