

1. Solve the simultaneous equations

$$x^2 + y^2 = 29$$
$$y - x = 3$$

(Total 7 marks)

- 2. Bill said that the line y = 6 cuts the curve $x^2 + y^2 = 25$ at two points.
 - (a) By eliminating *y* show that Bill is incorrect.

(2)

(b) By eliminating y, find the solutions to the simultaneous equations

$$x^2 + y^2 = 25$$
$$y = 2x - 2$$

 $x = \dots y = \dots$ or $x = \dots y = \dots$ (6) (Total 8 marks)

3. By eliminating *y*, find the solutions to the simultaneous equations

$$x^2 + y^2 = 25$$
$$y = x - 7$$

4. By eliminating *y*, find the solutions to the simultaneous equations

$$y - 2x = 3$$
$$x^2 + y^2 = 18$$

<i>x</i> =	. y	/ =	
or <i>x</i> =	. y	, =	
			(Total 7 marks)

5. Solve the simultaneous equations

$$x^2 + y^2 = 5$$
$$y = 3x + 1$$

x = *y* = or *x* = *y* = (Total 6 marks)

6. Solve the simultaneous equations

$$x + y = 4$$
$$x^2 + y^2 = 40$$

x =....., *y* = or *x* =....., *y* = (Total 7 marks)

7. By eliminating *x*, find the solutions to the simultaneous equations

$$x - 2y = 1$$
$$x^2 + y^2 = 13$$

$$x = \dots, y = \dots$$

or $x = \dots, y = \dots$
(Total 7 marks)