

Physical Quantities & Units TOPIC QUESTIONS (2)

Level	A Level
Subject	Physics
Exam Board	CIE
Paper Type	Multiple Choice
Time Allowed : 1 Hour 20 Minutes	
EXAM PA	APERS PRACTICE

1. What is a reasonable estimate of the diameter of an alpha particle?

A 10⁻¹⁵m B 10⁻¹²m C 10⁻⁹m D 10⁻⁶m

2. A series of measurements of the acceleration of free fall g is shown in the table. Which set of results is precise but not accurate?

		g /	ms-		
А	9.81	9.79	9.8	9.8	9.7
_			4	3	9
В	9.811	0.12	9.8	8.9	9.4
С	9.45	9.21	9 8.9	8 .7	9.4 2 8.5
			9	6	1
D	8.45	8.46	8.5	8.4	8.4
			0	1	7

3. A mass m has acceleration a. It moves through a distance sin time t. The power used in accelerating the mass is equal to the product of force and velocity. The percentage uncertainties are 0.1 % in m, 1 % in a, 1.5 % in s, 0.5 % in t.

PAPERS PRACTICE

What is the percentage uncertainty in the average power? A 2.1 % B 2.6 % C 3.1 % D 4.1 %

4. Five energies are listed.

5 kJ 5 mJ 5 MJ 5 nJ Starting with the smallest first, what is the order of increasing magnitude of these energies?

 $\begin{array}{l} A \ 5 \ kJ \rightarrow 5 \ mJ \rightarrow 5 \ MJ \rightarrow 5 \ nJ \\ B \ 5 \ nJ \rightarrow 5 \ kJ \rightarrow 5 \ MJ \rightarrow 5 \ mJ \\ C \ 5 \ nJ \rightarrow 5 \ mJ \rightarrow 5 \ mJ \rightarrow 5 \ MJ \\ D \ 5 \ mJ \rightarrow 5 \ nJ \rightarrow 5 \ MJ \rightarrow 5 \ MJ \end{array}$

A A Ω B W A⁻¹ C kg m² s⁻¹A⁻¹ D kg m²s⁻³A⁻¹

- 6. Which is an SI base unit?
 - b. gram

a. current

- c. kelvin
- d. volt
- 7. Which pair contains one vector and one scalar quantity?
 - A displacement acceleration
 - B force kinetic energy
 - C momentum velocity
 - D power speed
- 8. When a constant braking force is applied to a vehicle moving at speed *v*, the distance *d* moved by the vehicle in coming to rest is given by the expression

 $d = kv^2$

where k is a constant.

When d is measured in metres and v is measured in metres per second, the constant has a value of k_1 .

What is the value of the constant when the distance is measured in metres, and the speed ismeasured in kilometres per hour?

A 0.0772 k₁ B 0.278 k₁ C 3.60 k₁ D 13.0 k₁

9. What is a reasonable estimate of the average gravitational force acting on a fully grown womanstanding on the Earth?

A 60N B 250N C 350N D 650N

- 10. Which definition is correct and uses only quantities rather than units?
 - A Density is mass per cubic metre.
 - B Potential difference is energy per unit current.
 - C Pressure is force per unit area.
 - D Speed is distance travelled per second.
- 11. Decimal sub-multiples and multiples of units are indicated using a prefix to the unit. For example, the prefix milli (m) represents 10⁻³.

Which row gives the sub-multiples or multiples represented by pico (p) and giga (G)?

	pico (p)	giga (G)
А	10 ⁻⁹	10 ⁹
В	10 ⁻⁹	10 ¹²
С	10 ⁻¹²	10 ⁹ P/
)	10 ⁻¹²	10 ¹²

- 12. Which definition is correct and uses only quantities rather than units?
- a. Density is mass per cubic metre.
- b. Potential difference is energy per unit current.
- c. Pressure is force per unit area.
- d. Speed is distance travelled per second.
 - 13. Stress has the same SI base units as

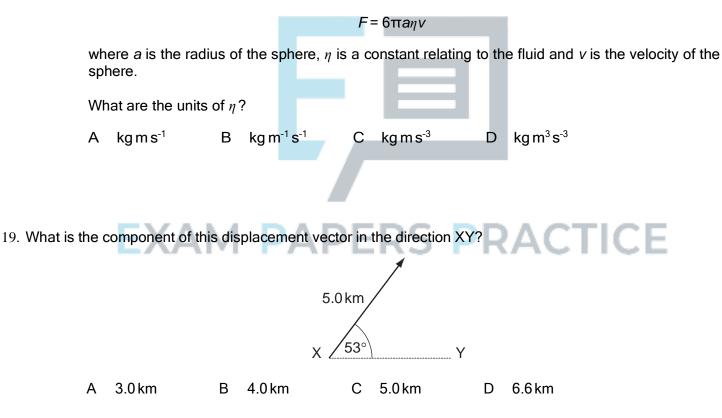
- B <u>force</u> length
- $C = \frac{\text{force}}{\text{area}}.$
- D energy.

14. To check calculations, the units are put into the following equations together with the numbers.

Which equation must be incorrect?

- A force = 300 J / 6 m
- B power = $6000 \text{ J} \times 20 \text{ s}$
- C time = $6 \text{ m} / 30 \text{ m s}^{-1}$
- D velocity = $4 \text{ m s}^{-2} \times 30 \text{ s}$
- 15. In making reasonable estimates of physical quantities, which statement is not correct?
 - A The frequency of sound can be of the order of GHz.
 - B The wavelength of light can be of the order of 600 nm.
 - C The Young modulus can be of the order of 10¹¹ Pa.
 - D Beta radiation is associated with one unit of negative charge.
- 16. A metal sphere of radius r is dropped into a tank of water. As it sinks at speed v, it experiences a drag force F given by F = krv, where k is a constant.

What are the SI base units of k?


A kgm^2s^{-1} B $kgm^{-2}s^{-2}$ C $kgm^{-1}s^{-1}$ D $kgms^{-2}$

17. Which row shows a base quantity with its correct SI unit?

	quantity	unit
Α	current	A
в	mass	g
С	temperature	°C
D	weight	N

18. The frictional force F on a sphere falling through a fluid is given by the formula

20. The SI unit for potential difference (the volt) is given, in base units, by

- A kg m $A^{-1} s^{-3}$.
- B $m^2 A^{-1} s^{-2}$.
- C kg $m^2 s^{-2}$.
- D kg $m^2 A^{-1} s^{-3}$.

21. A student uses a digital ammeter to measure a current. The reading of the ammeter is found to fluctuate between 1.98 A and

Which product-pair of metric prefixes has the greatest magnitude?

- A pico × mega B nano × kilo
- C micro × giğa D milli × tera

22. In the expressions below a is acceleration,

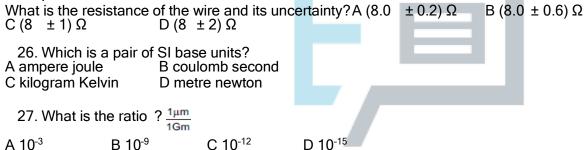
F is force, m is mass, t is time, v is velocity. Which expression represents energy? **A** Et **B** Evt **c** $\frac{2mv}{r}$ **b** $\frac{at^2}{r}$

A Ft **B** Fvt **C** $\frac{2mv}{t}$ **D** $\frac{at^2}{2}$

23. Which row of the table shows a physical quantity and its correct unit?

	physical quantity	unit
A	electric field strength	kg m s ⁻² C ⁻¹
в	specific heat capacity	kg ⁻¹ m ² s ⁻² K ⁻¹
С	tensile strain	kgm ⁻¹ s ⁻²
D	the Young modulus	kgm ⁻¹ s ⁻³

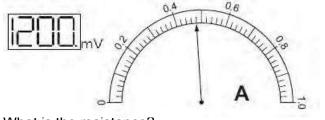
24. The measurement of a physical quantity may be subject torandom errors and to systematic errors. Which statement is correct?


A Random errors can be reduced by taking the average of several measurements.

B Random errors are always caused by the person taking themeasurement.

C A systematic error cannot be reduced.

D A systematic error results in a different reading each time the measurement is taken.


25. An experiment is done to measure the resistance of a wire. The current in the wire is 1.0 ± 0.2 A and the potential difference across the wire is 8.0 ± 0.4 V.

28. Which formula could be correct for the speed v of ocean waves in terms of the density ρ of seawater, the acceleration of free fall g, the depth h of the ocean and the wavelength λ?

A
$$v = \sqrt{g\lambda}$$
 B $v = \sqrt{\frac{g}{h}}$ **C** $v = \sqrt{\rho g h}$ **D** $v = \sqrt{\frac{g}{\rho}}$

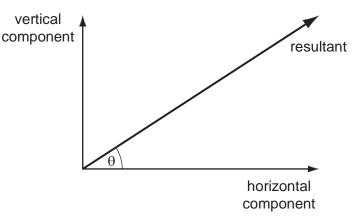
29. The resistance of an electrical component is measured. The following meter readings are obtained.

- What is the resistance? A 2.5 Ω B 2.7 Ω C 2500 Ω D 2700 Ω
 - 30. The equation relating pressure and density is p = pgh How can both sides of this equation be written in terms of base units?
 - **A** $[N m^{-1}] = [kgm^{-3}] [m s^{-1}] [m]$
 - **B** $[Nm^{-2}] = [kgm^{-3}] [ms^{-2}] [m]$
 - **C** $[kg m^{-1} s^{-2}] = [kg m^{-3}] [m s^{-2}] [m]$
 - $\mathbf{D} \quad [kg \, m^{-1} \, s^{-1}] = [kg \, m^{-1}] \, [m \, s^{-2}] \, [m]$

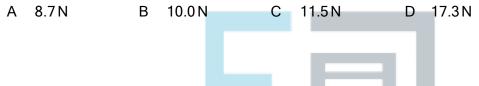
31. The table contains some quantities, together with their symbols and units.

quantity	symbol	unit
gravitational field strength	g	N kg⁻¹
density of liquid	ρ	kg m⁻³
vertical height	h	m
volume of part of liquid	V	m ³

Which expression has the units of energy?


А	gp hV	В	<u>ρ hV</u>	с <u>р</u> д	D	ρg²h
	9,0	2	g	hV		

- 32. Which statement, involving multiples and sub-multiples of the base unit metre (m), is correct?
 - A 1 pm = 10⁻⁹ m
 - B 1 nm = 10⁻⁶ m
 - C 1 mm = ${}^{6}\mu$ m
 - D 1 km = 6 mm


EXAM PAPERS PRACTICE

33. The diagram shows a resultant force and its horizontal and vertical components.

The horizontal component is 20.0 N and θ = 30°. What is the vertical component?

34. At temperatures close to 0 K, the specific heat capacity *c* of a particular solid is given by $c = bT^3$, where *T* is the thermodynamic temperature and *b* is a constant characteristic of the solid.

What are the units of constant b, expressed in SI base units?

- A $m^2 s^{-2} K^{-3}$
- B $m^2 s^{-2} K^{-4}$
- C kg m² s⁻² K⁻³ PAPERS PRACTICE
- 35. The table shows the *x*-component and *y*-component of four force vectors.

Which force vector has the largest magnitude?

	x-component/N	y-component/N
Α	2	9
в	3	8
С	4	7
D	5	6

36. Five energies are listed.

5 kJ

5 mJ

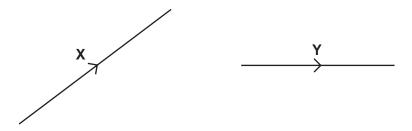
5 MJ

5 n J

Starting with the smallest first, what is the order of increasing magnitude of these energies?

- $A ~~5\,kJ \rightarrow 5\,mJ \rightarrow 5\,MJ \rightarrow 5\,nJ$
- $B ~~5\,nJ \rightarrow 5\,kJ \rightarrow 5\,MJ \rightarrow 5\,mJ$
- $C~~5\,nJ \rightarrow 5\,mJ \rightarrow 5\,kJ \rightarrow 5\,MJ$
- $D~~5\,mJ \rightarrow 5\,nJ \rightarrow 5\,kJ \rightarrow 5\,MJ$
- 37. Which of the following correctly expresses the volt in terms of SI base units?
 - Α ΑΩ
 - B WA-1
 - C kg m² s⁻¹ A⁻¹
 - D kg m² s⁻³ A⁻¹

EXAM PAPERS PRACTICE


38. The equation relating pressure and density is $p = \rho gh$.

How can both sides of this equation be written in terms of base units?

- A $[N m^{-1}] = [kg m^{-3}] [m s^{-1}] [m]$
- B $[N m^{-2}] = [kg m^{-3}] [m s^{-2}] [m]$
- C $[kg m^{-1} s^{-2}] = [kg m^{-3}] [m s^{-2}] [m]$
- D $[kg m^{-1} s^{-1}] = [kg m^{-1}] [m s^{-2}] [m]$

39. The diagram shows two vectors X and Y.

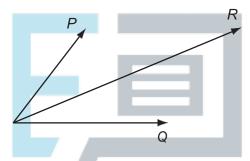
In which vector triangle does the vector Z show the magnitude and direction of vector X-Y?

40. Which is a pair of SI base units?

Α	ampere	joule
в	coulomb	second
С	kilogram	kelvin
D	metre	newton

41. Physical quantities can be classed as vectors or as scalars.

Which pair of quantities are both vectors?


- A kinetic energy and elastic force
- B momentum and time
- C velocity and electric field strength
- D weight and temperature

42. The units of all physical quantities can be expressed in terms of SI base units.

Which pair contains quantities with the same base units?

- A force and momentum
- B pressure and Young modulus
- C power and kinetic energy
- D mass and weight
- 43. Two physical quantities P and Q are added. The sum of P and Q is R, as shown.

Which quantity could be represented by *P* and by Q?

- A kinetic energy
- **B POWERAM PAPERS PRACTICE**
- C speed
- D velocity

44. Three of these quantities have the same unit.

Which quantity has a different unit?

- A <u>energy</u> distance
- B force
- c power × time
- D rate of change of momentum
- 45. When a force F moves its point of application through a displacement s in the direction of the force, the work W done by the force is given by

W = Fs.

How many vector quantities and scalar quantities does this equation contain?

- A one scalar quantity and two vector quantities
- B one vector quantity and two scalar quantities

C three scalar quantities

- D three vector quantities
- 46. What is a possible unit for the product VI, where V is the potential difference across a resistor and I is the current through the same resistor?

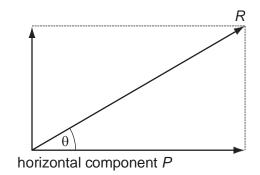
S PRACTICE

- A newton per second (N s⁻¹)
- B newton second (Ns)
- C newton metre (Nm)
- D newton metre per second $(Nm s^{-1})$
- 47. What is the unit watt in terms of SI base units?

A Js⁻¹ B m²kg s⁻¹ C m²kg s⁻³ D Nm s⁻¹

- 48. For which quantity is the magnitude a reasonable estimate?
 - A frequency of a radio wave 500 pHzB mass of

an atom 500 µg C the


Young modulus of a metal 500 kPaD wavelength of

green light

49. A vector has magnitude *R* and perpendicular components *P* and *Q*, as shown in the diagram.

vertical component Q

Which row correctly describes the perpendicular components?

	vertical component	horizontal component
А	Q	sinθ
В	Rcosθ	Р
С	Rcosθ	<i>R</i> sinθ
D	Rsinθ	R cosθ

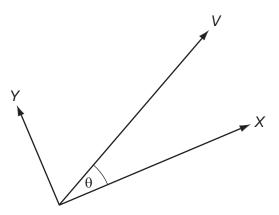
50. A thermometer can be read to an accuracy of 0.5 °C. This thermometer is used to measure a temperature rise from 40 °Cto 100 °C.

```
What is the percentage uncertainty in the measurement of the temperature rise?
A 0.5 % B 0.8 % C 1.3 % D 1.7%
```

- 51. The product of pressure and volume has the same SI base units as
 - A energy.
 - B force.
 - force
 - C area
 - D <u>force</u> length
- 52. An ion is accelerated by a series of electrodes in a vacuum. A graph of the power supplied to theion is plotted against time.

What is represented by the area under the graph between two times?

- A the change in kinetic energy of the ion
- B the average force on the ion
- C the change in momentum of the ion



D the change in velocity of the ion

EXAM PAPERS PRACTICE

53. A vector quantity *V* is resolved into two perpendicular components *X* and *Y*. The angle between *V* and component *X* is θ .

The angle between component X and the vector V is increased from 0° to 90° .

How do the magnitudes of X and Y change as the angle θ is increased in this way?

AincreaseincreaseBincreasedecreaseCdecreaseincrease		X	Y	
	А	increase	incre	ease
C decrease increase	В	increase	decr	ease
	С	decrease	incre	ease
D decrease decrease	D	decrease	decr	ease

EXAM PAPERS PRACTICE

54. What is the unit of resistivity?

A Ωm^{-2} B Ωm^{-1} C Ω D Ωm

55. The drag force *F* acting on a moving sphere obeys an equation of the form $F = kAv^2$, where *A* represents the sphere's frontal area and *v* represents its speed.

What are the base units of the constant k?

A $kg m^5 s^{-4}$ B $kg m^{-2} s^{-1}$ C $kg m^{-3}$ D $kg m^{-4} s^2$

- 56. Which pair includes a vector quantity and a scalar quantity?
 - А displacement; acceleration
 - В force; kinetic energy
 - С power;
 - D work; potential energy

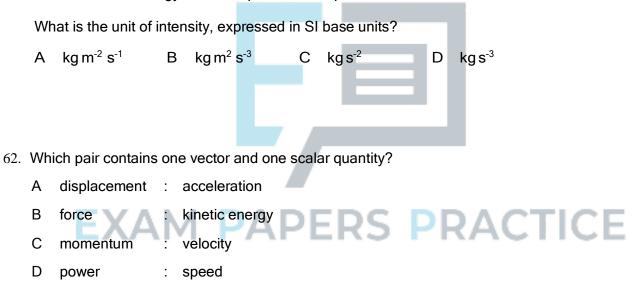
- 57. For which quantity is the magnitude a reasonable estimate?
 - frequency of a radio wave 500 pHz А
 - В mass of an atom 500 µg
 - С the Young modulus of a metal 500 kl
 - wavelength of green light D

Pa nm
nm
_

58. The following physical quantities can be either positive or negative.

500

- s : displacement of a particle along a straight line
- θ : temperature on the Celsius scale **PRACTICE**
- - V: readings on a digital voltmeter
- Which of these quantities are vectors?
- s, θ, q, V Α
- s, q, V В
- $C = \theta, V$
- D s only
- 59. Which pair of units are both SI base units?
 - А ampere, degree celsius
 - В ampere, kelvin
 - С coulomb, degree celsius
 - D coulomb, kelvin



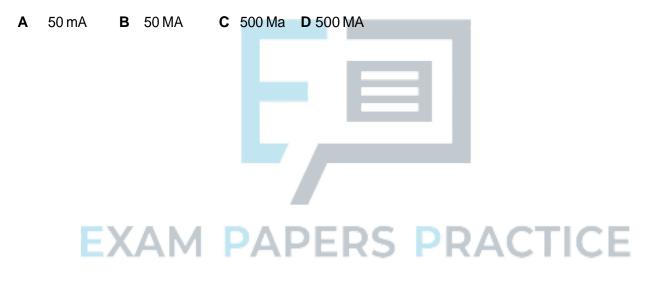
60. The prefix 'centi' indicates $x \ 10^{-2}$.

Which line in the table correctly indicates the prefixes micro, nano and pico?

	x 10 ⁻¹²	x 10 ⁻⁹	x 10 ⁻⁶
Α	nano	micro	pico
в	nano	pico	micro
С	pico	nano	micro
D	pico	micro	nano

61. When a beam of light is incident on a surface, it delivers energy to the surface. The intensity of the beam is defined as the energy delivered per unit area per unit time.

- 63. Which of the following could be measured in the same units as force?
 - A energy / distance
 - B energy x distance
 - C energy / time
 - D momentum x distance
 - 6_4 . The notation μ s is used as an abbreviation for a certain unit of time.


What is the name and value of this unit?

	name	value
A	microsecond	10 ⁻⁶ s
в	microsecond	10 ⁻³ s
С	millisecond	10 ⁻⁶ s
D	millisecond	10 ⁻³ s

65. A student measures a current as 0.5 A.

Which of the following correctly expresses this result?

