Physical Quantities \& Units TOPIC QUESTIONS (2)

| Level | AS Level |
| :--- | :--- | :--- |
| Subject | Physics |
| Exam Board | CIE |
| Paper Type | Multiple Choice |
| Time Allowed : 1 Hour 20 Minutes | |

1. What is a reasonable estimate of the diameter of an alphaparticle?
A $10^{-15} \mathrm{~m}$
B $10^{-12} \mathrm{~m}$
C $10^{-9} \mathrm{~m} \mathrm{D} 10^{-6} \mathrm{~m}$
2. A series of measurements of the acceleration of free fall g isshown in the table.

Which set of results is precise but not accurate?

	$\mathrm{g} / \mathrm{m} \mathrm{s}^{-2}$				
A	9.81	9.79	9.8	9.8	9.7
B	9.811	0.12	4.8	3	9
C	9.45	9.21	9.9	9	9.4
		8.9	8.7	2	
D	8.45	8.46	8.5	6	1
			0	1	8.4

3. A mass m has acceleration a. It moves through a distance sin time t. The power used in accelerating the mass is equal to the product of force and velocity. The percentage uncertainties are 0.1% in m , 1% in a, 1.5% in s, 0.5% in t.
What is the percentage uncertainty in the average power?
A 2.1 \%
B 2.6 \%
C 3.1 \%
D 4.1 \%
4. Five energies are listed.

5 kJ 5 mJ 5 MJ 5 nJ
Starting with the smallest first, what is the order of increasingmagnitude of these energies?
A $5 \mathrm{~kJ} \rightarrow 5 \mathrm{~mJ} \rightarrow 5 \mathrm{MJ} \rightarrow 5 \mathrm{~nJ}$
B $5 \mathrm{~nJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ} \rightarrow 5 \mathrm{~mJ}$
C $5 \mathrm{~nJ} \rightarrow 5 \mathrm{~mJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ}$
D $5 \mathrm{~mJ} \rightarrow 5 \mathrm{~nJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ}$
5. Which of the following correctly expresses the volt in terms of SI base units?
A A Ω
B W A^{-1}
$C \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-1} \mathrm{~A}^{-1} D \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
6. Which is an $S I$ base unit?
a. current
b. gram
c. kelvin
d. volt
7. Which pair contains one vector and one scalar quantity?

A displacement acceleration
B force kinetic energy
C momentum velocity
D power speed
8. When a constant braking force is applied to a vehicle moving at speed v, the distance d movedby the vehicle in coming to rest is given by the expression

$$
d=k v^{2}
$$

For more help, please visit www.exampaperspractice.co.uk
where k is a constant.
When d is measured in metres and v is measured in metres per second, the constant has a valueof k_{1}.
What is the value of the constant when the distance is measured in metres, and the speed ismeasured in kilometres per hour?
A $0.0772 k_{1}$
B $0.278 k_{1}$
C $3.60 k_{1}$
D $\quad 13.0 k_{1}$
9. What is a reasonable estimate of the average gravitational force acting on a fully grown womanstanding on the Earth?
A 60 N
B 250 N
C 350 N
D 650 N
10. Which definition is correct and uses only quantities rather than units?

A Density is mass per cubic metre.
B Potential difference is energy per unit current.
C Pressure is force per unit area.
D Speed is distance travelled per second.
11. Decimal sub-multiples and multiples of units are indicated using a prefix to the unit. For example,the prefix milli (m) represents 10^{-3}.

Which row gives the sub-multiples or multiples represented by pico (p) and giga (G) ?

	pico (p)	giga (G)
A	10^{-9}	10^{9}
B	10^{-9}	10^{12}
C	10^{-12}	10^{9}
D	10^{-12}	10^{12}

12. Which definition is correct and uses only quantities rather than units?
a. Density is mass per cubic metre.
b. Potential difference is energy per unit current.
c. Pressure is force per unit area.
d. Speed is distance travelled per second.
13. Stress has the same SI base units as

A force .
For more help, please visit www.exampaperspractice.co.uk

B
force
length
C $\frac{\text { force }}{\text { area }}$.
D
energy.

EXAM PAPERS PRACTICE
14. To check calculations, the units are put into the following equations together with the numbers.

Which equation must be incorrect?
A force $=300 \mathrm{~J} / 6 \mathrm{~m}$
B power $=6000 \mathrm{~J} \times 20 \mathrm{~s}$
C time $=6 \mathrm{~m} / 30 \mathrm{~m} \mathrm{~s}^{-1}$
D velocity $=4 \mathrm{~ms}^{-2} \times 30 \mathrm{~s}$
15. In making reasonable estimates of physical quantities, which statement is not correct?

A The frequency of sound can be of the order of GHz .
B The wavelength of light can be of the order of 600 nm .
C The Young modulus can be of the order of $10^{11} \mathrm{~Pa}$.
D Beta radiation is associated with one unit of negative charge.
16. A metal sphere of radius r is dropped into a tank of water. As it sinks at speed v, it experiences a drag force F given by $F=k r v$, where k is a constant.

What are the $S I$ base units of k ?
A $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
B $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-2}$
C $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
D $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
17. Which row shows a base quantity with its correct $S I$ unit?

	quantity	unit
A	current	A
B	mass	g
C	temperature	${ }^{\circ} \mathrm{C}$
D	weight	N

18. The frictional force F on a sphere falling through a fluid is given by the formula

$$
F=6 \pi a \eta v
$$

where a is the radius of the sphere, η is a constant relating to the fluid and v is the velocity of the sphere.

What are the units of η ?
A kgms^{-1}
B $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
C $\mathrm{kg} \mathrm{m} \mathrm{s}^{-3}$
D $\mathrm{kg} \mathrm{m}^{3} \mathrm{~s}^{-3}$
19. What is the component of this displacement vector in the direction $X Y$?

A 3.0 km
B $\quad 4.0 \mathrm{~km}$
C $\quad 5.0 \mathrm{~km}$
D $\quad 6.6 \mathrm{~km}$
20. The SI unit for potential difference (the volt) is given, in base units, by

A $\mathrm{kgmA}^{-1} \mathrm{~s}^{-3}$.
B $\mathrm{m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-2}$.
C $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$.
D $\mathrm{kg} \mathrm{m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3}$.
21. A student uses a digital ammeter to measure a current. The reading of the ammeter is found to fluctuate between 1.98 A and
Which product-pair of metric prefixes has the greatestmagnitude?
B nano \times kilo
C micro \times giga
D milli \times tera
For more help, please visit www.exampaperspractice.co.uk
22. In the expressions below a is acceleration, F is force, $\quad \mathrm{m}$ is mass, $\quad \mathrm{t}$ is time, $\quad \mathrm{v}$ is velocity. Which expression represents energy?
A Ft
c $\frac{2 m v}{t}$
D $\frac{a t^{2}}{2}$
23. Which row of the table shows a physical quantity and its correctunit?

	physical quantity	unit
A	electric field strength	$\mathrm{kg} \mathrm{ms}^{-2} \mathrm{C}^{-1}$
B	specific heat capacity	$\mathrm{kg}^{-1} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
C	tensile strain	$\mathrm{kgm}^{-1} \mathrm{~s}^{-2}$
D	the Young modulus	$\mathrm{kgm}^{-1} \mathrm{~s}^{-3}$

24. The measurement of a physical quantity may be subject torandom errors and to systematic errors. Which statement is correct?
A Random errors can be reduced by taking the average of severalmeasurements.
B Random errors are always caused by the person taking themeasurement.
C A systematic error cannot be reduced.
D A systematic error results in a different reading each time the measurement is taken.
25. An experiment is done to measure the resistance of a wire. Thecurrent in the wire is $1.0 \pm 0.2 \mathrm{~A}$ and the potential difference acrossthe wire is $8.0 \pm 0.4 \mathrm{~V}$.
What is the resistance of the wire and its uncertainty? $A(8.0 \pm 0.2) \Omega \quad B(8.0 \pm 0.6) \Omega$ $\mathrm{C}(8 \pm 1) \Omega \quad \mathrm{D}(8 \pm 2) \Omega$
26. Which is a pair of SI base units?
A ampere joule
B coulomb second
C kilogram Kelvin
D metre newton

27. What is the ratio $? \frac{1 \mu \mathrm{~m}}{1 \mathrm{Gm}}$
A 10^{-3}
B 10^{-9}
C 10^{-12}
D 10^{-15}
28. Which formula could be correct for the speed v of ocean waves in terms of the density ρ of seawater, the acceleration of free fall g , the depth h of the ocean and the wavelength λ ?
A $v=\sqrt{g \lambda}$

C $v=\sqrt{\rho g h}$
D $v=\sqrt{\frac{g}{\rho}}$
29. The resistance of an electrical component is measured. Thefollowing meter readings are obtained.

What is the resistance?
A 2.5Ω B 2.7Ω C 2500Ω
D 2700Ω
30. The equation relating pressure and density is $p=\rho g h$

How can both sides of this equation be written in terms of baseunits?
A $\left[\mathrm{Nm}^{-1}\right]=\left[\mathrm{kgm}^{-3}\right]\left[\mathrm{m} \mathrm{s}^{-1}\right][\mathrm{m}]$
B $\left[\mathrm{Nm}^{-2}\right]=\left[\mathrm{kgm}^{-3}\right]\left[\mathrm{ms}^{-2}\right][\mathrm{m}]$
C $\left[\mathrm{kgm}^{-1} \mathrm{~s}^{-2}\right]=\left[\mathrm{kgm}^{-3}\right]\left[\mathrm{ms}^{-2}\right][\mathrm{m}]$
D $\left[\mathrm{kgm}^{-1} \mathrm{~s}^{-1}\right]=\left[\mathrm{kgm}^{-1}\right]\left[\mathrm{ms}^{-2}\right][\mathrm{m}]$
31. The table contains some quantities, together with their symbols and units.

quantity	symbol	unit
gravitational field strength	g	Nkg^{-1}
density of liquid	ρ	$\mathrm{kg} \mathrm{m}^{-3}$
vertical height	h	m
volume of part of liquid	V	$\mathrm{~m}^{3}$

Which expression has the units of energy?
A $g \rho h V$
B $\frac{\rho h V}{g}$
C $\quad \underset{h V}{\rho g}$
D $\rho g^{2} h$
32. Which statement, involving multiples and sub-multiples of the base unit metre (m), is correct?

A $1 \mathrm{pm}=10^{-9} \mathrm{~m}$
B $1 \mathrm{~nm}=10^{-6} \mathrm{~m}$
C $1 \mathrm{~mm}={ }^{6} \mu \mathrm{~m}$
D $1 \mathrm{~km}={ }^{6} \mathrm{~mm}$

EXAM PAPERS PRACTICE
33. The diagram shows a resultant force and its horizontal and vertical components.

The horizontal component is 20.0 N and $\theta=30^{\circ}$. What is the vertical component?
A $\quad 8.7 \mathrm{~N}$
B $\quad 10.0 \mathrm{~N}$
C $\quad 11.5 \mathrm{~N}$
D $\quad 17.3 \mathrm{~N}$
34. At temperatures close to 0 K , the specific heat capacity c of a particular solid is given by $c=b T^{3}$, where T is the thermodynamic temperature and b is a constant characteristic of the solid.

What are the units of constant b, expressed in SI base units?
A $\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-3}$
B $\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-4}$

D $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-4}$
35. The table shows the x-component and y-component of four force vectors.

Which force vector has the largest magnitude?

	x-component/N	y-component/N
A	2	9
B	3	8
C	4	7
D	5	6

36. Five energies are listed.

5 kJ
5 mJ
5 MJ
5 nJ
Starting with the smallest first, what is the order of increasing magnitude of these energies?
A $5 \mathrm{~kJ} \rightarrow 5 \mathrm{~mJ} \rightarrow 5 \mathrm{MJ} \rightarrow 5 \mathrm{~nJ}$
B $5 \mathrm{~nJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ} \rightarrow 5 \mathrm{~mJ}$
C $5 \mathrm{~nJ} \rightarrow 5 \mathrm{~mJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ}$
D $5 \mathrm{~mJ} \rightarrow 5 \mathrm{~nJ} \rightarrow 5 \mathrm{~kJ} \rightarrow 5 \mathrm{MJ}$
37. Which of the following correctly expresses the volt in terms of SI base units?

A $\mathrm{A} \Omega$
B W^{-1}
C $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1} A^{-1}$
D $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$

EXAM PAPERS PRACTICE
38. The equation relating pressure and density is $p=\rho g h$.

How can both sides of this equation be written in terms of base units?
A $\quad\left[\mathrm{N} \mathrm{m}^{-1}\right]=\left[\mathrm{kg} \mathrm{m}^{-3}\right]\left[\mathrm{m} \mathrm{s}^{-1}\right][\mathrm{m}]$
B $\quad\left[\mathrm{N} \mathrm{m}^{-2}\right]=\left[\mathrm{kg} \mathrm{m}^{-3}\right]\left[\mathrm{m} \mathrm{s}^{-2}\right][\mathrm{m}]$
C $\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}\right]=\left[\mathrm{kg} \mathrm{m}^{-3}\right]\left[\mathrm{m} \mathrm{s}^{-2}\right][\mathrm{m}]$
D $\left[\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right]=\left[\mathrm{kg} \mathrm{m}^{-1}\right]\left[\mathrm{m} \mathrm{s}^{-2}\right][\mathrm{m}]$
39. The diagram shows two vectors X and Y.

In which vector triangle does the vector Z show the magnitude and direction of vector $X-Y$?

40. Which is a pair of SI base units?

A	ampere	joule
B	coulomb	second
C	kilogram	kelvin
D	metre	newton

41. Physical quantities can be classed as vectors or as scalars.

Which pair of quantities are both vectors?
A kinetic energy and elastic force
B momentum and time
C velocity and electric field strength
D weight and temperature
For more help, please visit www.exampaperspractice.co.uk
42. The units of all physical quantities can be expressed in terms of SI base units.

Which pair contains quantities with the same base units?

A force and momentum
B pressure and Young modulus
C power and kinetic energy
D mass and weight
43. Two physical quantities P and Q are added. The sum of P and Q is R, as shown.

Which quantity could be represented by P and by Q ?
A kinetic energy
${ }^{8}$ bame
C speed
D velocity

EXAM PAPERS PRACTICE
44. Three of these quantities have the same unit.

Which quantity has a different unit?
A $\frac{\text { energy }}{\text { distance }}$
B force
C power \times time
D rate of change of momentum
45. When a force F moves its point of application through a displacement s in the direction of the force, the work W done by the force is given by

$$
W=F s .
$$

How many vector quantities and scalar quantities does this equation contain?
A one scalar quantity and two vector quantities
B one vector quantity and two scalar quantities
C three scalar quantities
D three vector quantities
46. What is a possible unit for the product $V I$, where V is the potential difference across a resistor and I is the current through the same resistor?

A newton per second $\left(\mathrm{Ns}^{-1}\right)$
B newton second (Ns)
C newton metre (Nm)
D newton metre per second $\left(\mathrm{Nm} \mathrm{s}^{-1}\right)$
47. What is the unit watt in terms of SI base units?
A Js^{-1}
B $\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$
C $\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
D Nms^{-1}
48. For which quantity is the magnitude a reasonable estimate?

A frequency of a radio wave 500 pHzB mass of an atom $500 \mu \mathrm{~g} \mathrm{C}$ the

Young modulus of a metal 500 kPaD wavelength of
For more help, please visit www.exampaperspractice.co.uk
green light
500 nm
49. A vector has magnitude R and perpendicular components P and Q, as shown in the diagram.

Which row correctly describes the perpendicular components?

	vertical component	horizontal component
A	Q	$\sin \theta$
B	$R \cos \theta$	P
C	$R \cos \theta$	$R \sin \theta$
D	$R \sin \theta$	$R \cos \theta$

50.A thermometer can be read to an accuracy of $0.5^{\circ} \mathrm{C}$. This thermometer is used to measure a temperature rise from $40^{\circ} \mathrm{Cto} 100^{\circ} \mathrm{C}$.
What is the percentage uncertainty in the measurement of the temperature rise?
A 0.5 \% B 0.8%
C 1.3 \%
D 1.7\%
51. The product of pressure and volume has the same SI base units as

A energy.
B force.
C $\frac{\text { force }}{\text { area }}$.
D force length
52. An ion is accelerated by a series of electrodes in a vacuum. A graph of the power supplied to theion is plotted against time.

What is represented by the area under the graph between two times?
A the change in kinetic energy of the ion
B the average force on the ion
C the change in momentum of the ion
For more help, please visit www.exampaperspractice.co.uk

D the change in velocity of the ion

53. A vector quantity V is resolved into two perpendicular components X and Y. The angle between V and component X is θ.

The angle between component X and the vector V is increased from 0° to 90°.
How do the magnitudes of X and Y change as the angle θ is increased in this way?

	X	Y
A	increase	increase
B	increase	decrease
C	decrease	increase
D	decrease	decrease

EXAM PAPERS PRACTICE
54. What is the unit of resistivity?
A $\Omega \mathrm{m}^{-2}$
B $\Omega \mathrm{m}^{-1}$
C Ω
D $\Omega \mathrm{m}$
55. The drag force F acting on a moving sphere obeys an equation of the form $F=k A v^{2}$, where A represents the sphere's frontal area and v represents its speed.

What are the base units of the constant k ?
A $\mathrm{kgm}^{5} \mathrm{~s}^{-4}$
B $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
C $\mathrm{kg} \mathrm{m}^{-3}$
D $\mathrm{kg} \mathrm{m}^{-4} \mathrm{~s}^{2}$
56. Which pair includes a vector quantity and a scalar quantity?

A displacement; acceleration
B force; kinetic energy
C power;
D work; potential energy
57. For which quantity is the magnitude a reasonable estimate?

A frequency of a radio wave 500 pHz
B mass of an atom $500 \mu \mathrm{~g}$
C the Young modulus of a metal 500 kPa
D wavelength of green light 500 nm

58. The following physical quantities can be either positive or negative.
s : displacement of a particle along a straight line
θ : temperature on the Celsius scale q : electric charge
V : readings on a digital voltmeter
Which of these quantities are vectors?
A s, θ, q, V
$B \quad s, q, V$
C θ, V
D sonly
59. Which pair of units are both SI base units?

A ampere, degree celsius
B ampere, kelvin
C coulomb, degree celsius
D coulomb, kelvin
60. The prefix 'centi' indicates $\times 10^{-2}$.

Which line in the table correctly indicates the prefixes micro, nano and pico?

	$\times 10^{-12}$	$\times 10^{-9}$	$\times 10^{-6}$
A	nano	micro	pico
B	nano	pico	micro
C	pico	nano	micro
D	pico	micro	nano

61. When a beam of light is incident on a surface, it delivers energy to the surface. The intensity ofthe beam is defined as the energy delivered per unit area per unit time.

What is the unit of intensity, expressed in SI base units?
A $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
B $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
C $\mathrm{kg} \mathrm{s}^{-2}$
D $\mathrm{kg} \mathrm{s}^{-3}$
62. Which pair contains one vector and one scalar quantity?

A displacement : acceleration

C momentum : velocity
D power : speed
63. Which of the following could be measured in the same units as force?

A energy/distance
B energy x distance
C energy / time
D momentum x distance
64. The notation $\mu \mathrm{s}$ is used as an abbreviation for a certain unit of time.

What is the name and value of this unit?

EXAM PAPERS PRACTICE

	name	value
A	microsecond	$10^{-6} \mathrm{~s}$
B	microsecond	$10^{-3} \mathrm{~s}$
C	millisecond	$10^{-6} \mathrm{~s}$
D	millisecond	$10^{-3} \mathrm{~s}$

65. A student measures a current as 0.5 A .

Which of the following correctly expresses this result?
A $\quad 50 \mathrm{~mA}$
B 50 MA
C 500 Ma D 500 MA

EXAM PAPERS
PRACTICE

