

Particle & Nuclear Physics

TOPIC QUESTIONS (2)

Level	AS Level		
Subject	Physics		
Exam Board	CIE		
Paper Type	Multiple Choice		

Time Allowed: 50min

1. Nuclear decay is both spontaneous and random in nature.

Which row gives the correct experimental evidence for these properties?

	spontaneous nature of decay	random nature of decay
А	the decay rate is not affected by pressure	the decay rate is not affected by temperature
В	the decay rate is not affected by pressure	the rate at which radiation is received at a counter fluctuates
С	the decay rate is not affected by temperature	the decay rate is not affected by pressure
D	the rate at which radiation is received at a counter fluctuates	the decay rate is not affected by pressure

2. Radon ²²²₈₆Rn is the start of a decay chain that forms bismuth ²¹⁴₈Bi by alpha and beta emission.

For the decay of each nucleus of radon, how many α -particles and β -particles are emitted?

	α-particles	β-particles
Α	1	1
В	2	1
С	1	2
D	2	2

3. An atomic nucleus emits a β -particle.

What change does this cause to the proton number and the nucleon number of the nucleus?

	proton number	nucleon number
Α	-1	+1
В	0	-1
С	+1	-1
D	+1	0

- 4. Which statement concerning α -particles is correct?
 - a. An α -particle has charge +4e.
 - b. An α -particle is a helium atom.
 - c. When α -particles travel through air, they cause ionisation.
 - D. When α -particles travel through a sheet of gold foil, they make the gold radioactive
- 5. The first artificial radioactive substance was made by bombarding aluminium, α -particles. This produced an unstable isotope of phosphorus, $_{15}$ 39 . What was the
 - A an α -particle
 - B a β-particle
 - C a γ-ray
 - D a neutron
- 6. Isotopes of a given element all have the same
 - A charge / mass ratio.

by-product of this reaction?

- B neutron number.
- C nucleon number.
- D proton number.

7. Which are the correct descriptions of a γ -ray and a β -particle?

	γ-ray	β-particle
Α	high-speed electron	electromagnetic radiation
В	electromagnetic radiation	Helium-4 nucleus
С	electromagnetic radiation	high-speed electron
D	high-speed electron	Helium-4 nucleus

8. A certain nuclide, Uranium-235, has nucleon number 235, proton number 92 and neutron number

143. Data our other nuclides are given below.

Which is an isotope of Uranium-235?

	nucleon number	pro	oton nu	ımber	neutron number
Α	235	91			144
В	236	92			144
С	237	94			143
D	238	95			143

9. In what way do the atoms of the isotopes ¹²C, ¹³C and ¹⁴C differ?

- A different charge
- **B** different numbers of electrons
- **C** different numbers of neutrons
- **D** different numbers of protons

10. Protons and neutrons are thought to consist of smaller particles called quarks.

The 'up' quark has a charge of $\frac{2}{3}e$: a 'down' quark has a charge of -elementary charge (+1.6 x 10^{-19} C).

How many up quarks and down quarks must a proton contain?

	up quarks	down quarks
Α	0	3
В	1	1
С	1	2
D	2	1

11. The nuclide ${}^{222}_{86}$ Rn decays in a sequence of stages to form the nuclide ${}^{206}_{82}$ Pb.

Four of the nuclides formed in the sequence are α -particle emitters. The others are β -particle emitters.

How many nuclides formed in the decay sequence are β -particle emitters?

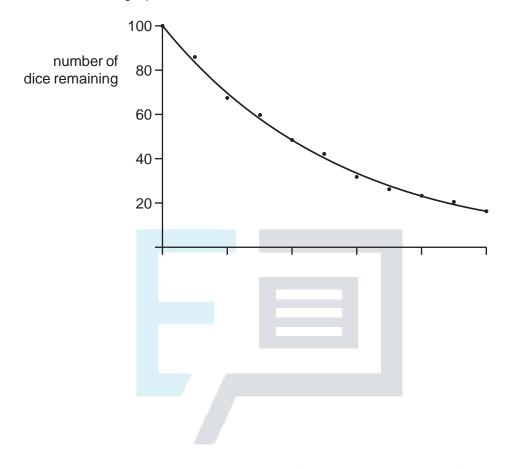
- A 2
- B 4
- C 8
- D 12

12. A uranium-238 nucleus, $^{238}_{92}U$, undergoes nuclear decays to form uranium-234, $^{234}_{92}U$.

Which series of decays could give this result?

- a. emission of four β -particles
- b. emission of four γ -rays
- c. emission of one α -particle and two β -particles
- d. emission of two α -particles and eight β -particles

13. The nuclear equation for a fission reaction is shown below.


$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{93}_{X}Rb + ^{141}_{55}Cs + ^{1}_{0}n$$

What are the values of X and Y?

	Х	Y
Α	37	0
В	37	1
С	37	2
D	38	2

14. A class of students used dice to simulate radioactive decay. After each throw, those dice showing a '6' were removed. The graph shows the results.

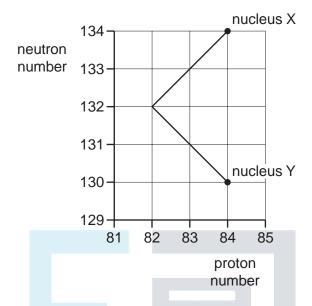
0 0 2 4 10

number of throws of the dice

What could the scatter of points about the best-fit curve represent for actual radioactive decay?

- A background count not being taken into account
- B more than one type of radiation being present
- C the random nature of radioactive decay
- D the spontaneous nature of radioactive decay
- 15. A different nucleus can be formed by bombarding a stable nucleus with an energetic α -particle.
 - $^{23}_{11}$ Na is bombarded with an energetic α -particle.

What could be the products of this nuclear reaction?


- A $^{25}_{10}$ Ne + neutron
- B $^{25}_{11}$ Na + proton
- C $^{26}_{12}$ Mg + β
- D $_{13}^{27} Al + \gamma$
- 16. A nuclear isotope emits radiation which is detected by a Geiger-Müller tube held at a distance of about 10 cm from the radioactive source. The radiation is stopped completely by a 2 mm thick sheet of lead.

What can be deduced from this information about the emission from the isotope?

- A It could be alpha and beta radiation, but not gamma radiation.
- B It could be alpha and gamma radiation, but not beta radiation.
- C It could be beta and gamma radiation, but not alpha radiation.
- D It could be alpha, beta and gamma radiation.
- 139 What remains constant during β-emission from a number of identical nuclei in a substance?
 - A energy of the β-particles
 - B neutron number of the nuclei
 - C nucleon number of the nuclei
 - D proton number of the nuclei

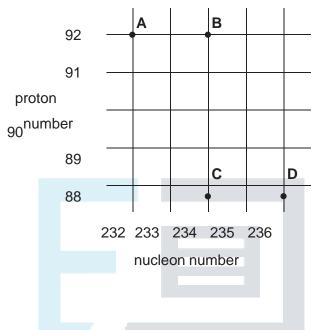
18. The graph of neutron number against proton number represents a sequence of radioactive decays.

Nucleus X is at the start of the sequence and, after the decays have occurred, nucleus Y is formed.

What is emitted during the sequence of decays?

- A one α -particle followed by one β -particle
- B one α -particle followed by two β -particles
- C two α -particles followed by two β -particles
- D two β -particles followed by one α -particle

19. An experiment in which α -particles were deflected by a gold foil produced new insights into the structure of the atom.


Which conclusion can be drawn from the results of the experiment?

- a. Atomic nuclei occupy a very small fraction of the volume of an atom.
- b. Electrons orbit the atomic nucleus.
- c. Some atoms of the same element contain different numbers of neutrons.
- d. The atomic nucleus contains protons and neutrons.

 $^{20.}$ Thorium- $^{^{234}}_{_{90}}$ Th) decays by β-emission into a daughter product which in turn decays by further β-emission into a granddaughter product.

Which letter in the diagram represents the granddaughter product?

21. Which two nuclei contain the same number of neutrons?

b.
$${}^{16}_{7}N$$
 and ${}^{15}_{8}$

d.
$$^{32}_{14}$$
Si and $^{32}_{15}$ P

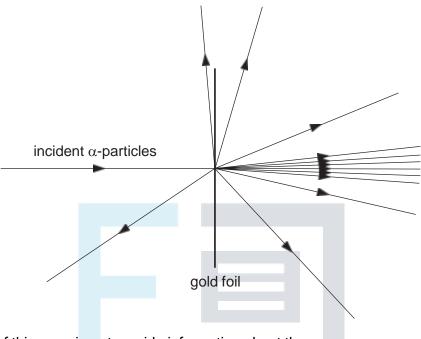
22. A student conducts an experiment using an α -particle source.

When considering safety precautions, what can be assumed to be the maximum range of α -particles in air?

- A between 0 and 5 mm
- B between 5 mm and 200 mm
- C between 200 mm and 500 mm
- D between 500 mm and 1000 mm
- 23. The table shows three properties of different types of ionising radiation.

	Х	Y	Z
charge	0	-1 <i>e</i>	+2 <i>e</i>
mass	0	$\frac{1}{1840}u$	4 u
speed	С	~0.9 <i>c</i>	~0.1 <i>c</i>

What are the radiations X, Y and Z?


	X	Υ	Z
Α	alpha	beta	X-ray
В	gamma	alpha	beta
С	gamma	beta	alpha
D	X-rays	al pha	beta

- 24. Which conclusion can be drawn from the results of the experiment showing the scattering of α -particles by gold foil?
 - A Electrons orbit the atomic nucleus in well-defined paths.
 - B Nuclei of different isotopes contain different numbers of neutrons.
 - C The atomic nucleus contains protons and neutrons.
 - D The nucleus is very small compared with the size of the atom.

25. A thin gold foil is bombarded with α -particles as shown.

The results of this experiment provide information about the

- A binding energy of a gold nucleus.
- B energy levels of electrons in gold atoms.
- C size of a gold nucleus.
- D structure of a gold nucleus.
- 26. A counter recording radioactive decays from a radioactive source gives the following counts inequal intervals of time.

time / min	counts
0-10	424
10-20	395
20-30	413
30-40	363
40-50	366
50-60	294
60-70	301
70-80	253
80-90	212

For more help, please visit www.exampaperspractice.co.uk

What can be deduced from these readings?

- A that radioactivity is random and that the half-life is 90 minutes
- B that radioactivity is random and that the half-life is uncertain
- C that radioactivity is spontaneous and that the half-life is 90 minutes
- D that radioactivity is spontaneous and that the half-life is uncertain
- 27. What is not conserved in nuclear processes?
 - A charge
 - B momentum
 - C the total number of neutrons
 - D the total number of nucleons

28. Nuclear decay is both spontaneous and random.

When the count rate of a radioactive isotope is measured, the readings fluctuate. Which row describes what the fluctuations demonstrate?

	spontaneous nature	random nature
Α	no	no
В	no	y es
С	yes	no
D	yes	yes

 493 29. When boron-11 611 B) is bombarded with α -particles, a new nucleus is formed and a neutron is released.

RS PRACTICE

Which nuclear equation could represent this reaction?

A
$${}_{5}^{11}B + {}_{1}^{1}He \rightarrow {}_{6}^{11}C + {}_{0}^{1}n$$

$$B \quad {}^{11}_{5}B \, + \, {}^{2}_{2}He \, \rightarrow \, {}^{12}_{7}N \, + \, {}^{1}_{0}$$

C
$${}_{5}^{11}B + {}_{2}^{4}He \rightarrow {}_{6}^{14}C + {}_{1}^{1}n$$
D ${}_{5}^{11}B + {}_{2}^{4}He \rightarrow {}_{7}^{14}N + {}_{0}^{1}n$

D
$${}^{11}B + {}^{4}He \rightarrow {}^{14}N + {}^{1}n$$

30. What is not conserved in nuclear processes?

- A energy and mass together
- nucleon number
- C neutron number
- D charge

31. It was once thought that the mass of an atom is spread uniformly through the volume of the atom.

When α -particles are directed at a piece of gold foil, the results led scientists to believe instead that nearly all the mass of the gold atom is concentrated at a point inside the atom.

Which effect is possible only if nearly all the mass of the gold atom is concentrated at a point?

- A a few α -particles bounce back
- B most α-particles are only slightly deflected
- C some α-particles pass through without any deflection
- D some α -particles are absorbed

32. Which pair of nuclei are isotopes of one another?

	nucleon number	number of neutrons
Α	186 180	112 118
В	186 182	112 108
С	184 187	110 110
D	186 186	110 112

ERS PRACTICE

- 33. What is the approximate mass of an alpha particle?
 - A 10⁻²⁸ kg
 - B 10⁻²⁶ kg
 - C 10⁻²⁴ kg
 - D 10⁻²² kg
- 34. An actinium nucleus has a nucleon number of 227 and a proton number of 89. It decays to form aradium nucleus, emitting a beta particle and an alpha particle in the process.

What are the nucleon number and the proton number of this radium nucleus?

	nucleon number	proton number
Α	223	87
В	223	88
С	224	87
D	225	86

35. Scientists investigating the count rate from a radioactive source observed that the count ratefluctuates.

What do these fluctuations imply about the nature of radioactive decay?

- A It involves atomic nuclei.
- B It is predictable.
- C It is random.
- D It is spontaneous.

36. The symbol $^{77}_{32}\,\mathrm{Ge}$ represents a nucleus of germanium that decays to a nucleus of arsenic by emitting a β -particle.

What is the symbol of this arsenic nucleus?

- $^{76}_{32}$ As
- B $^{78}_{32}$ As C $^{78}_{31}$ As D $^{77}_{33}$ As

- 37. Each of the nuclei below is accelerated from rest through the same potential difference. Which one completes the acceleration with the lowest speed?
- $A \frac{1}{1}H$
- B ⁴He
- C ⁷Li
- D ⁹Be
- 38. Which statement concerning α -particles is correct?
 - A An α -particle has charge +4e.
 - B An α -particle is a helium atom.
 - C When α -particles travel through air, they cause ionisation.
 - D When α -particles travel through a sheet of gold foil, they make the gold radioactive.
- 39. Where are electrons, neutrons and protons found in an atom?

	electrons		protons
Α	in the nucleus	in the nucleus	orbiting the nucleus
В	in the nucleus	orbiting the nucleus	in the nucleus
С	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	in the nucleus	in the nucleus

40. Radon 226 Rn decays by $\alpha-$ and $\beta-$ emission to bismuth 283 Bi

For the decay of each nucleus of radon, how many $\alpha-$ and $\beta-$ particles are emitted?

	α-particles	β-particles
Α	1	1
В	2	1
С	1	2
D	2	2