

Particle & Nuclear Physics

TOPIC QUESTIONS (2)

Level	A Level
Subject	Physics
Exam Board	CIE
Paper Type	Multiple Choice

Time Allowed : 50min

EXAM PAPERS PRACTICE

1. Nuclear decay is both spontaneous and random in nature.

Which row gives the correct experimental evidence for these properties?

	spontaneous nature of decay	random nature of decay
A	the decay rate is not affected by pressure	the decay rate is not affected by temperature
В	the decay rate is not affected by pressure	the rate at which radiation is received at a counter fluctuates
С	the decay rate is not affected by temperature	the decay rate is not affected by pressure
D	the rate at which radiation is received at a counter fluctuates	the decay rate is not affected by pressure

2. Radon ²²²₈₀Rn is the start of a decay chain that forms bismuth ²¹⁴₈Bi by alpha and beta emission.

For the decay of each nucleus of radon, how many α -particles and β -particles are emitted?

	α-particles	β-particles
А	1	1
В	2	1
С	1	2
D	2	2

An atomic nucleus emits a β-particle.
 What change does this cause to the proton number and the nucleon number of the nucleus?

	proton number	nucleon number		
Α	-1	+1		
в	0	-1		
С	+1	-1		
D	+1	0	DC	
EZ		PAPE	K2	РК

- 4. Which statement concerning α -particles is correct?
 - a. An α -particle has charge +4e.
 - b. An α -particle is a helium atom.
 - c. When α -particles travel through air, they cause ionisation.
 - D. When α -particles travel through a sheet of gold foil, they make the gold radioactive
- 5. The first artificial radioactive substance was made by bombarding aluminium, $_{13}$ α -particles. This produced an unstable isotope of phosphorus, $_{15}\overset{29}{P}$. What was the

PAPERS PRACTICE

by-product of this reaction?

- A an α -particle
- B a β -particle
- C a γ-ray
- D a neutron
- 6. Isotopes of a given element all have the same
 - A charge / mass ratio.
 - B neutron number.
 - C nucleon number.
 - D proton number.

7. Which are the correct descriptions of a γ -ray and a β -particle?

	γ- r ay	β-particle
Α	high-speed electron	electromagnetic radiation
В	electromagnetic radiation	Helium-4 nucleus
С	electromagnetic radiation	high-speed electron
D	high-speed electron	Helium-4 nucleus

8. A certain nuclide, Uranium-235, has nucleon number 235, proton number 92 and neutron number

143. Data our other nuclides are given below.

Which is an isotope of Uranium-235?

	nucleon number	proton number	neutron number
Α	235	91	144
В	236	92	144
С	237	94	143
D	238	95	143

- 9. In what way do the atoms of the isotopes ${}^{12}C_{6}$, ${}^{13}C_{6}$ and ${}^{14}C_{6}$ differ?
 - A different charge
 - **B** different numbers of electrons
 - **C** different numbers of neutrons
 - D different numbers of protons

10. Protons and neutrons are thought to consist of smaller particles called quarks.

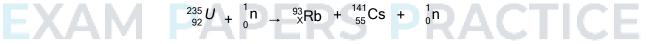
The 'up' quark has a charge of $\frac{2}{3}e$: a 'down' quark has a charge of –elegnentary charge (+1.6 x 10⁻¹⁹C).

How many up quarks and down quarks must a proton contain?

	up quarks	down quarks
Α	0	3
в	1	1
С	1	2
D	2	1

11. The nuclide $\frac{222}{86}$ Rn decays in a sequence of stages to form the nuclide $\frac{206}{82}$ Pb.

Four of the nuclides formed in the sequence are α -particle emitters. The others are β -particle emitters.

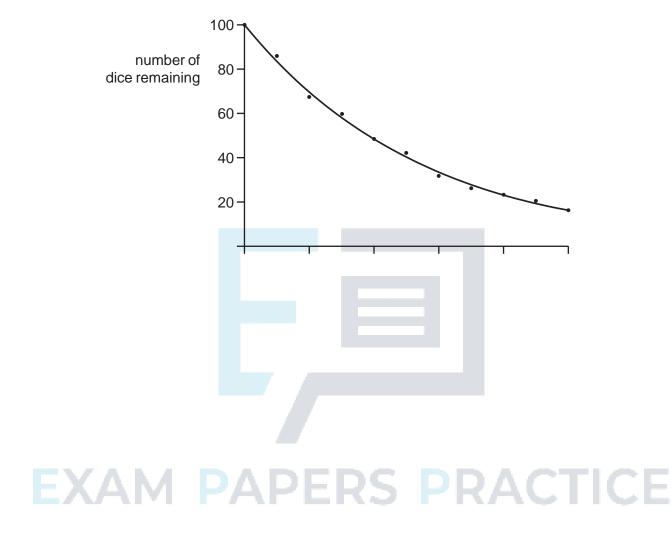

How many nuclides formed in the decay sequence are β-particle emitters?

A 2 B 4 C 8 D 12

12. A uranium-238 nucleus, $^{238}_{92}U$, undergoes nuclear decays to form uranium-234, $^{234}_{92}U$.

Which series of decays could give this result?

- a. emission of four β -particles
- b. emission of four γ -rays
- c. emission of one α -particle and two β -particles
- d. emission of two α -particles and eight β -particles
- 13. The nuclear equation for a fission reaction is shown below.



What are the values of X and Y?

	Х	Y
А	37	0
В	37	1
С	37	2
D	38	2

14. A class of students used dice to simulate radioactive decay. After each throw, those dice showing a '6' were removed. The graph shows the results.

10

number of throws of the dice

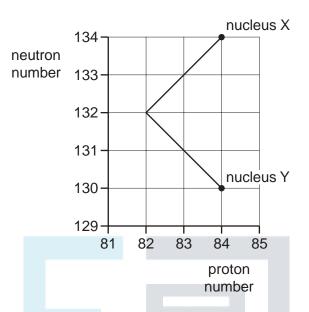
What could the scatter of points about the best-fit curve represent for actual radioactive decay?

- A background count not being taken into account
- B more than one type of radiation being present
- C the random nature of radioactive decay
- D the spontaneous nature of radioactive decay
- 15. A different nucleus can be formed by bombarding a stable nucleus with an energetic α -particle.

²³₁₁Na is bombarded with an energetic α-particle. What could be the products of this nuclear reaction? A $^{25}_{10}$ Ne + neutron B $^{25}_{11}$ Na + proton C $^{26}_{12}$ Mg + β D $^{27}_{13}$ Al + γ

16. A nuclear isotope emits radiation which is detected by a Geiger-Müller tube held at a distance of about 10 cm from the radioactive source. The radiation is stopped completely by a 2 mm thick sheet of lead.

What can be deduced from this information about the emission from the isotope?


- A It could be alpha and beta radiation, but not gamma radiation.
- B It could be alpha and gamma radiation, but not beta radiation.
- C It could be beta and gamma radiation, but not alpha radiation.
- D It could be alpha, beta and gamma radiation.

139 What remains constant during β -emission from a number of identical nuclei in a substance?

- A energy of the β -particles
- B neutron number of the nuclei
- C nucleon number of the nuclei
- D proton number of the nuclei

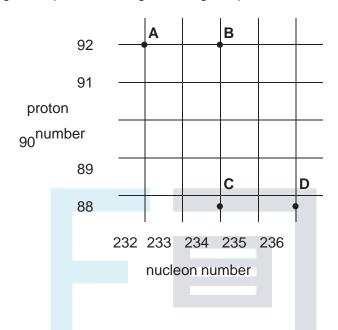
18. The graph of neutron number against proton number represents a sequence of radioactive decays.

Nucleus X is at the start of the sequence and, after the decays have occurred, nucleus Y is formed.

PRACTICE

What is emitted during the sequence of decays?

- A one α -particle followed by one β -particle
- B one α -particle followed by two β -particles
- C two α -particles followed by two β -particles
- D two β -particles followed by one α -particle
- 19. An experiment in which α -particles were deflected by a gold foil produced new insights into the structure of the atom.


Which conclusion can be drawn from the results of the experiment?

- a. Atomic nuclei occupy a very small fraction of the volume of an atom.
- b. Electrons orbit the atomic nucleus.
- c. Some atoms of the same element contain different numbers of neutrons.
- d. The atomic nucleus contains protons and neutrons.

20. Thorium- $\frac{^{234}}{_{90}}$ Th) decays by β -emission into a daughter product which in turn decays by further β -emission into a granddaughter product.

Which letter in the diagram represents the granddaughter product?

21. Which two nuclei contain the same number of neutrons?

- a^{12}_{6} and b^{14}_{6} C
- d. ${}^{32}_{14}$ Si and ${}^{32}_{15}$ P

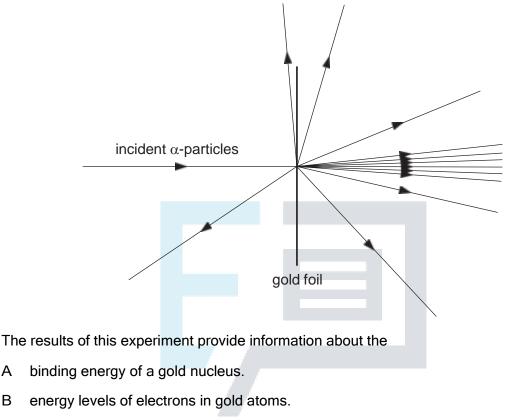
b. ¹⁶₇N and ¹⁵₈O **P**APERS **PRACTICE** ²³₁₁Na and ²⁴₁₂Mg

22. A student conducts an experiment using an α -particle source.

When considering safety precautions, what can be assumed to be the maximum range of α -particles in air?

- A between 0 and 5 mm
- B between 5 mm and 200 mm
- C between 200 mm and 500 mm
- D between 500 mm and 1000 mm
- 23. The table shows three properties of different types of ionising radiation.

	Х	Y	Z
charge	0	-1 <i>e</i>	+2e
mass	0	$\frac{1}{1840}u$	4 u
speed	С	~0.9 <i>c</i>	~0.1 <i>c</i>


What are the radiations X, Y and Z?

	х	Y	Z
A	alpha	beta	X-ray
в	gamma	alpha	beta
С	gamma	beta	alpha
D	X-rays	al pha	beta

- 24. Which conclusion can be drawn from the results of the experiment showing the scattering of α -particles by gold foil?
 - A Electrons orbit the atomic nucleus in well-defined paths.
 - B Nuclei of different isotopes contain different numbers of neutrons.
 - C The atomic nucleus contains protons and neutrons.
 - D The nucleus is very small compared with the size of the atom.

25. A thin gold foil is bombarded with α -particles as shown.

size of a gold nucleus. С

А

В

- D structure of a gold nucleus.
- 26. A counter recording radioactive decays from a radioactive source gives the following counts inequal intervals of time.

-

RS PRACTI

-

	1
time / min	counts
0-10	424
10-20	395
20-30	413
30-40	363
40-50	366
50-60	294
60-70	301
70-80	253
80-90	212

What can be deduced from these readings?

- A that radioactivity is random and that the half-life is 90 minutes
- B that radioactivity is random and that the half-life is uncertain
- C that radioactivity is spontaneous and that the half-life is 90 minutes
- D that radioactivity is spontaneous and that the half-life is uncertain
- 27. What is not conserved in nuclear processes?
 - A charge
 - B momentum
 - C the total number of neutrons
 - D the total number of nucleons

EXAM PAPERS PRACTICE

28. Nuclear decay is both spontaneous and random.

When the count rate of a radioactive isotope is measured, the readings fluctuate. Which row

describes what the fluctuations demonstrate?

AnonoBnoyesCyesnoDyesyes		spontaneous nature	random nature
C yes no	А	no	no
, 10	В	no	yes
D yes yes	С	yes	no
	D	yes	yes

⁴⁹29. When boron-11 (¹¹B) is bombarded with α-particles, a new nucleus is formed and a neutron is released.

Which nuclear equation could represent this reaction?

A
$${}^{11}B_{5} + {}^{1}He_{7} \rightarrow {}^{11}C_{7} + {}^{1}n_{0}$$

B ${}^{11}B_{5} + {}^{2}He_{7} \rightarrow {}^{12}N_{7} + {}^{1}n_{0}$
C ${}^{11}B_{5} + {}^{4}He_{7} \rightarrow {}^{14}C_{7} + {}^{1}n_{0}$
D ${}^{11}B_{5} + {}^{4}He_{7} \rightarrow {}^{14}N_{7} + {}^{1}n_{0}$

- 30. What is not conserved in nuclear processes?
 - A energy and mass together
 - B nucleon number
 - C neutron number
 - D charge

31. It was once thought that the mass of an atom is spread uniformly through the volume of the atom.

When α -particles are directed at a piece of gold foil, the results led scientists to believe instead that nearly all the mass of the gold atom is concentrated at a point inside the atom.

Which effect is possible only if nearly all the mass of the gold atom is concentrated at a point?

- A a few α -particles bounce back
- B most α-particles are only slightly deflected
- C some α-particles pass through without any deflection
- D some α -particles are absorbed
- 32. Which pair of nuclei are isotopes of one another?

	•				
	nucleon number	number on neutrons			
Α	186	112			
	180	118			
В	186	112			
D	180	108			
С	184	110			
_	187	110			
D	186	110	\ DF	DS.	
-7.4	186	112			

- 33. What is the approximate mass of an alpha particle?
 - A 10⁻²⁸ kg
 - B 10⁻²⁶ kg
 - C 10⁻²⁴ kg
 - D 10⁻²² kg
- 34. An actinium nucleus has a nucleon number of 227 and a proton number of 89. It decays to form aradium nucleus, emitting a beta particle and an alpha particle in the process.

What are the nucleon number and the proton number of this radium nucleus?

	nucleon number	proton number
А	223	87
В	223	88
С	224	87
D	225	86

35. Scientists investigating the count rate from a radioactive source observed that the count ratefluctuates.

What do these fluctuations imply about the nature of radioactive decay?

- A It involves atomic nuclei.
- B It is predictable.
- C It is random.
- D It is spontaneous.

36. The symbol $^{77}_{32}$ Ge represents a nucleus of germanium that decays to a nucleus of arsenic by emitting a β -particle.

What is the symbol of this arsenic nucleus?

A ${}^{76}_{32}$ As B ${}^{78}_{32}$ As C ${}^{78}_{31}$ As D ${}^{77}_{33}$ As

37. Each of the nuclei below is accelerated from rest through the same potential

difference. Which one completes the acceleration with the lowest speed?

A ${}^{1}H_{1}$ B ${}^{4}He_{2}$ C ${}^{7}Li_{3}$ D ${}^{9}Be_{4}$

- 38. Which statement concerning α -particles is correct?
 - A An α -particle has charge +4e.
 - B An α -particle is a helium atom.
 - C When α -particles travel through air, they cause ionisation.
 - D When α -particles travel through a sheet of gold foil, they make the gold radioactive.
- 39. Where are electrons, neutrons and protons found in an atom?

	electrons		protons
А	in the nucleus	in the nucleus	orbiting the nucleus
В	in the nucleus	orbiting the nucleus	in the nucleus
С	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	in the nucleus	in the nucleus

40. Radon ²²⁸⁶Rn decays by α – and β – emission to bismuth ²⁸³Bi.

For the decay of each nucleus of radon, how many α - and β -particles are emitted?

ACTICE

	α-particles	β-particles
А	1	1
В	2	1
С	1	2
D	2	2