

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P79557A
Publications Code 4MB1_02R_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks can only be awarded when relevant M marks have been gained
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o cso correct solution only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

No working

If no working is shown, then correct answers may score full marks
If no working is shown, then incorrect (even though nearly correct) answers
score no marks.

With working

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: e.g. uses 252 instead of 255; follow through their working and deduct 2A marks from any gained provided the work has not been simplified. (Do not deduct any M marks gained.)

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used

Examiners should send any instance of a suspected misread to review (but see above for simple misreads).

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes
1	$12x - 16y = 12 21x - 28y = 21$ $12x - 21y = 6 16x - 28y = 8$ $y = \frac{4x - 2}{7} \text{ or } y = \frac{3x - 3}{4} \text{ or}$ $x = \frac{2 + 7y}{4} \text{ or } x = \frac{3 + 4y}{3}$		4	M1 for preparing to eliminate a variable either by multiplying so the coefficients of x (or y) are the same or rearranging to get x in terms of y or y in terms of x Allow one arithmetic or sign slip in total for both M marks [Allow eg, $x = \frac{5+11y}{7}$ or $x = 3y-1$ or $y = \frac{7x-5}{11}$ or $y = \frac{x+1}{3}$]
	$5y = 6 \text{ or } 5x = 13 \text{ or } 3x - 4\left(\frac{4x - 2}{7}\right) = 3 \text{ or}$ $4x - 7\left(\frac{3x - 3}{4}\right) = 2 \text{ or } 3\left(\frac{2 + 7y}{4}\right) - 4y = 3 \text{ or}$ $4\left(\frac{3 + 4y}{3}\right) - 7y = 2$	x = 2.6 and $y = 1.2$		M1 dependent on previous mark For a correct method to eliminate either variable by adding/subtracting equations or substituting to obtain an equation in one variable NB the alternative forms of x and y listed in the notes above can be substituted into either of the correct original equations Allow one arithmetic or sign slip in total for both M marks A correct equation in one variable implies the previous mark A2 wr dependent both method marks being awarded and having a correct equation in terms of x or y only Accept exact fractions eg $x = \frac{13}{5}$ and $y = \frac{6}{5}$ or simplified mixed numbers
				eg $x = 2\frac{3}{5}$ and $y = 1\frac{1}{5}$ isw if correct form is seen NB we will not accept decimals within a fraction eg $\frac{7.8}{3}$ May be seen within a coordinate pair (A1 for just one value correct) Total 4 marks

Question	Working	Answer	Mark	Notes
2				Use the overlay when marking this question

(a)		1	B1 full Circle centre C radius 4 cm – within guidelines
			Allow faint lines and short breaks in the line as long as the intention to draw a full circle is clear
(b)		2	B2 for a line within the guidelines and 2 pairs of suitable intersecting arcs which intersect within the guidelines (if extended)
			(B1 for a line within the guidelines or 2 pairs of suitable intersecting arcs)
			NB The line can be any length - does not need to cross <i>BC</i> but should remain within the guidelines if it were to be extended to <i>BC</i>
(c)		1	B1 must have a partial circle and at least B1 in (b). Correct region shaded.
			Total 4 marks

Question	Working	Answer	Mark	Notes
3 (a)	$\frac{360}{20}$ [=18] or $(20-2)\times180$ [=3240] or		2	M1 Finding the sum of the interior angles or the exterior angle of the
				polygon. May be seen as part of calculation eg $\left(180 - \frac{360}{20}\right)$ or
	$(2 \times 20 - 4) \times 90 [= 3240]$			20 /
				$\left(\frac{(20-2)\times 180}{20}\right) \text{ or } \frac{(2\times 20-4)\times 90}{20}$
		162		
(b)	$(2\times7-4)\times90[=900]$ or $(2\times6-4)\times90[=720]$ or	102	4	A1 cas May be seen on diagram. M1 for a start to the process,
				either a correct method to find the sum of the interior angles of a 7,
	$(2\times5-4)\times90[=540]$ or $(2\times4-4)\times90[=360]$ or			6, 5, 4 or 10 sided polygon.
	$(2 \times 10 - 4) \times 90 [= 1440]$			Allow for $(n-2) \times 180$ where $n = 7, 6, 5, 4, 10$
	[\(\text{PGF} \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			or $\angle FGE$. Allow $180 = "162" + 2x$ oe
	$\left[\angle FGE = \right] \frac{180 - "162"}{2} \left[= 9 \right]$			NB, if found, the 9 could be seen on the diagram or labelled as
				$\angle FEG, \angle FGE, \angle DEC, \angle DCE, \angle BCA, \angle BAC$
	$\left[\angle FGA \text{ or } \angle BAG = \right] \frac{"900" - 5 \times "162"}{2} \left[= 45 \right]$			M1 ft a correct method to find an angle within the polygon eg $\angle FGA$ or $\angle BAG$ or $\angle DEG$ or $\angle ACD$ or $\angle ACE$ Allow the
	$\left[\angle DEG \ or \ \angle ACD =\right]"162"-"9"\left[=153\right]$			angles, represented by any variable, to be seen within an equation eg $900 = 5 \times 162 + 2x$
	$[\angle ACE \ or \ \angle CEG =] \frac{"1440"}{10} [= 144] \text{ or}$			ft their part (a), their sum of angles and their $\angle FGE$ if clearly labelled, seen on the diagram or from correct working
	$\left[\angle ACE \ or \ \angle CEG =\right]"162"-2\times"9"\left[=144\right]$			
	$\left[\angle DEA \text{ or } \angle BAE = \right] \frac{"540" - 3 \times "162"}{2} \left[= 27 \right]$			
	eg $[\angle EGA =]$ " $\angle FGA$ "-" $\angle FGE$ " or			M1 ft a complete method to find $\angle EGA$
	$\left[\angle EGA = \right] "720" - "\angle BAG" - "\angle DEG" - 3 \times "162" \text{ or}$			ft their part (a), their sum of angles and their calculated angles if
	-			clearly labelled, seen on the diagram or from correct working
	$\left[\angle EGA = \right]^{"360"-2\times"\angle CEG"}$ or $\left[\angle EGA = \right]180 - "144"$ or			There are alternative approaches, for example
	2			$ \left[\angle EGA = \right] 180 - \angle AEG - \angle EAG = 180 - ("162" - "27" - "9") - ("45" - "27") $
	$\left[\angle EGA = \right] \frac{"540" - "162" - 2 \times " \angle DEG"}{2}$			
	<u> </u>	36	1	A1 cas
		- ~		Total 6 marks

Que	stion	Working	Ans	Mark	Notes
4	(a)	$2 \times 7^2 - 5 = 93$ and $2 \times 3^2 - 5 = 13$ or		2	M1 for a correct method to find the 3 rd and 7 th term or the 3 rd and
		$2 \times 7^2 = 98$ and $2 \times 3^2 = 18$			7 th term minus 5
		2×1 [-98] and 2×3 [-18]			Allow for 93 and 13 or 98 and 18
	(1.)		80		A1 cas Allow –80
	(b)	d(2x-1) + 2 = 4x + 9		5	M1 for
		and $d(4x+9)+2=20x-11$ or $d(d(2x-1)+2)+2=20x-11$ oe			• forming two recurrence relationships (allow one sign error).
		AND			Allow equivalences eg $2xd^2 - d^2 + 2d + 2 = 20x - 11$
					 AND rearranging at least one of their equations to isolate either d
		$[d=]\frac{4x+7}{2x-1}$ or $[d=]\frac{20x-13}{4x+9}$ or $[d=]\frac{4x+9}{2x-1}$ or $[d=]\frac{20x-13}{4x+7}$ or			or x
					OI X
		$[d=]\frac{56x+50}{22x}$ or $[d=]\frac{48}{6x-14}$ or $[d=]\frac{16x-20}{2x+10}$ or $[d=]\frac{12x-27}{11}$ or			Any two expressions for d (or for x) imply the correct recurrence
					relationships
		$[x=]\frac{13+9d}{d+7}$ or $[x=]\frac{d+7}{2d-4}$ or $[x=]\frac{13+9d}{20-4d}$ or $[x=]\frac{20-4d}{2d-4}$ or $[x=]\frac{11d+27}{12}$ or			
		d+7 $2d-4$ $20-4d$ $2d-4$ 12			This mark can be implied by the correct 3-term quadratic
		$[x-1]\frac{48+14d}{4}$ or $[x-1]\frac{11d+20}{4}$ or $[x-1]\frac{50}{4}$ or $[x-1]\frac{d^2-2d-13}{4}$			
		$[x=]$ $\frac{48+14d}{6d}$ or $[x=]$ $\frac{11d+20}{16-2d}$ or $[x=]$ $\frac{50}{22d-56}$ or $[x=]$ $\frac{d^2-2d-13}{2d^2-20}$			
		$\pm (24x^2 - 110x - 50) = 0$ or $\pm (12x^2 - 55x - 25) = 0$ or			M2 for a correct 3-term quadratic (allow multiples) no need for =
		$\pm (22d^2 - 2d - 192) = 0$ or $\pm (11d^2 - d - 96) = 0$			
		$\pm (22a - 2a - 192)[=0]$ or $\pm (11a - a - 90)[=0]$			(M1 for a 3-term quadratic with 2 correct coefficients)
					M1 dependent on the 1 st M1 being awarded. For an attempt at
		(12x+5)(x-5) oe or			solving their 3-term quadratic. If factorising it must multiply out to gain at least 2 correct terms. If using the quadratic formula it
					must be correct.
		(11d+32)(d-3) oe			
					Can be implied by $x = -\frac{5}{12}$ or 5 or $d = 3$ or $d = -\frac{32}{11}$
			3	-	A1 wr dependent on 3 method marks awarded
			S		d = 3 must be clearly selected
	l				Total 7 marks
L				1	Total / Hallis

Question	Working	Answer	Mark	Notes
5 (a)	$1000 + 7 \times 400[=3800]$ or $1000 + 0.8 \times 500[=1400]$ or $7 \times 400 + 0.8 \times 500[=3200]$		5	M1 for calculating the combined cost of any two components These may be seen within a calculation for multiple minibuses eg for 3 minibuses $3 \times (1000 + 7 \times 400) [= 3000 + 8400 = 11400]$ or $3 \times (1000 + 0.8 \times 500) [= 3000 + 1200 = 4200]$ or
	$1000 + 7 \times 400 + 0.8 \times 500 [= 4200]$		_	$3\times (7\times 400 + 0.8\times 500) [= 8400 + 1200 = 9600]$ M1 fully correct method for the total cost. This may be seen within a calculation for multiple minibuses, eg, $3\times (1000 + 7\times 400 + 0.8\times 500) [= 12600]$
	$\frac{10584}{3} [= 3528] \text{ or}$ "4200"×3[=12600] or $\left("4200" \times m \text{ and } \frac{10584 \times m}{3} [= 3528m]\right)$			4200 implies M1M1 unless contradictory working is seen M1 finding value(s) that can be compared either the cost of hiring 1 discounted minibus (hybrid) or 3 full-price minibuses or (m full-price minibuses and m discounted minibuses) ft their values if they come from correct method 12600 implies M1M1M1 unless contradictory working is seen
	$\pm \frac{"3528"}{"4200"}[=0.84] \text{ or}$ $\pm \frac{"3528"}{"4200"} \times 100[=84] \text{ or}$ $\pm \frac{"4200" - "3528"}{"4200"}[=0.16] \text{ or}$			M1 ft their values if they all use the same value of m and come from correct working Allow calculation for m minibuses eg for 3 minibuses $\pm \frac{10584}{"12600"}$ or $\pm \frac{"12600"-10584}{"12600"}$
	"4200"× $\frac{100-n}{100}$ [="3528"] or "4200"- $\frac{n}{100}$ ×4200 [="3528"]	16		A1 cas
(b)		4500	1	B1 oe eg $2^2 \times 3^2 \times 5^3$ isw

(c)	$2^{3} \times 3 \times 5 \text{ and } 2^{3} \times 3^{2} \times 7$ $5 \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ $LCM = 2^{3} \times 3^{2} \times 5 \times 7 \text{ or } 2520$		3	M1 allow $120 = 8 \times 3 \times 5$ and/or $504 = 8 \times 3 \times 21$ may be reduced further or list of at least 4 multiples for one of the numbers 120, 240, 360, 480, 600, 720, 840,2016, 2520 or 504, 1008, 1512, 2016, 2520 (allow multiples with 7 added) A1 correct LCM Correct value implies M1
		2527	-	A1 cas SC award 3 marks for a final answer of 7
ALT	120x + 7 = 504y + 7		3	M1 for setting up the correct relationship
	$\frac{x}{y} = \frac{21}{5}$			A1 may be seen embedded eg $120 \times 21 + 7$ or $504 \times 5 + 7$ Allow $x = 21$ and $y = 5$
		2527		A1 cas
(d)	[hybrid vans] $0.4 \times \frac{5}{8} \times 200$ [= 50] oe		4	M1 For a correct method to find the number of hybrid vans Allow 40% as 0.4 or $\frac{4}{10}$ or $\frac{40}{100}$. Implied by 50
	[hybrid minibuses] $\frac{9}{25} \times \frac{3}{8} \times 200$ [= 27] oe			M1 for a correct method to find the number of hybrid minibuses Implied by 27
	$\frac{"50"+"27"}{200} [\times 100]$			M1 ft their values if clearly labelled or if they come from correct method
		38.5		A1 wr dependent on all method marks awarded
ALT	$0.4 \times 5 = 2$ or $0.4 \times \frac{5}{8} = \frac{1}{4}$		4	M1 for a correct method to find the relative number or proportions of hybrid vans
	$\frac{9}{25} \times 3 \left[= \frac{27}{25} = 1.08 \right] \text{ or } \frac{9}{25} \times \frac{3}{8} \left[= \frac{27}{200} \right]$			M1 for a correct method to find the relative number or proportions of hybrid minibuses
	$\frac{"2"+"1.08"}{8} [\times 100] \text{ or } \frac{1}{4}"+"\frac{27}{200}"[\times 100]$			M1 ft their values if they come from correct method
		38.5		A1 wr dependent on all method marks awarded
				Total 13 marks

Questi	ion	Working	Answer	Mark	Notes
6	(a)	C D D 26 4 39 - x 6 H		3	B3 fully correct (B2 6 or 7 correct) (B1 3, 4 or 5 correct) Allow 34 for <i>x</i> Allow 5 or <i>x</i> – 29 for 39 – <i>x</i>
	(b)	x+10+3+4-37=4+3+2+"39-x" oe	34	2	M1 ft their Venn diagram if at least one region has x in and no areas are blank (x must not cancel out) We must see the relation between the horses and cats so look for $cats - 37 = horses$ or $cats = horses + 37$ or $cats - horses = 37$ May be seen with sections combined eg $x + 17 = 48 - x + 37$ A1 cas
	(c)		36	1	B1 ft "10" + "26"
	(d)		8	1	B1 ft "6" + "2" or 90 – "82"
					Total 7 marks

Ques	tion	Working	Answer	Mark	Notes
7	(a)	for moving triangle A 4 left or moving triangle A 7 up or for correctly translating two of the vertices		2	M1 implied by an attempt at the correct translation
			Triangle C		A1 cas for a fully correct triangle (-1, 7) (-4, 7) (-4, 9)
	(b)	correct reflection in the vertical line $x = k$ or for correctly reflecting 2 vertices or a correct reflection in the horizontal line $y = 4$		2	M1 implied by an attempt at reflection
			Triangle D		A1 cas for a fully correct triangle (5,0) (8, 0) (8, 2)
	(c)	$\tan(x) = \frac{1}{2} \text{ oe or } \sin(x) = \frac{2}{2\sqrt{5}} \text{ oe or}$ $\cos(x) = \frac{4}{2\sqrt{5}} \text{ oe or } \cos(x) = \frac{4^2 + (2\sqrt{5})^2 - 2^2}{2 \times 4 \times 2\sqrt{5}} \text{ oe}$ $x = 26.565 \text{ or } x = 63.434$		3	M1 uses a trigonometric method to calculate an angle. ft their $\sqrt{4^2 + 2^2}$ in place of $\sqrt{5}$ when using sin or cos Allow $\sin(x) = \frac{4}{2\sqrt{5}}$ oe or $\cos(x) = \frac{2}{2\sqrt{5}}$ oe Note that measuring the angle is not an acceptable method A1 wr awrt 27 or 63 condone 26 (truncation) if an acceptable
			117		method was seen A1ft wr awrt 117° ft their x value if from correct working.
					SC3 for using $\cos^{-1} \left(\frac{-2}{2\sqrt{5}} \right) = 116.56$
					Total 7 marks

Que	stion	Working	Answer	Mark	Notes
8	(a)(i)		0.35	1	B1 oe
	(ii)		0.85	1	B1 oe
	(iii)	0.1 + 0.15 + 0.2 + 2x + 2x + 0.1 + x = 1		3	M1 using sum of probabilities = 1
					May be seen in any form for example as
					[P(less than 8) =]0.1 + 0.15 + 0.2 + 2x = 1 - (2x + 0.1 + x)
					[P(odd)=]0.1+0.2+2x+2x+0.1+x=0.85
					This may be seen earlier in (a) or by the table.
		2x+2x+x=1-0.1-0.2-0.15-0.1 oe or			M1 dependent on previous M1
		5x = 0.45 or $x = 0.09$			Correctly isolating terms in <i>x</i> (condone one arithmetic/sign error)
	-	3% 0.15 00 01 % 0.07			This may be seen earlier in (a) or by the table.
			0.63		A1 cas oe
	(b)	$[2\times]0.15\times0.2$		2	M1 for the probability of the red dice landing on 2 then 5 or the probability
					of the red dice landing on 5 then 2
					May be seen as $0.15 \times 0.2 + 0.2 \times 0.15$
			0.06		A1 cas oe
	(c)	$80 \times (0.15 + 0.1)$		2	M1 for $80 \times p$ where 0
			20		A1 cas
	(d)	$0.1 \times 0.24 + 0.15 \times 0.24 + 0.1 \times 0.12$ [= 0.072]		3	M1 for finding the probability that the score is < 6
	_				This may be seen embedded within another calculation
		$\frac{0.15 \times 0.24}{"0.072"} [= 0.5]$			M1 for $\frac{0.15 \times 0.24}{p}$ where 0.036
	-	0.072	0.5	-	A1 cas oe
			0.3		Total 12 marks

Question	Working	Answer	Mark	Notes
9 (a)	Allow 3, 3.1, 3.14 etc	e or $\frac{22}{7}$	for π	
	$17 \times 20 [= 340]$ or $26 \times 20 [= 520]$		5	M1 correct method to find area of one of the rectangular sides Allow $2 \times 17 \times 20 = 680$
	$2\pi \times 5 \times 20$ [= $200\pi = 628.318$] or $\pi \times 5 \times 20$ [= $100\pi = 314.159$]			M1 for a method to find the surface area of the cylinder or half-cylinder.
	and $\pi \times 5^2 \left[= 25\pi = 78.539 \right]$ or $0.5 \times \pi \times 5^2 \left[= \frac{25}{2}\pi = 39.269 \right]$			Allow $\pi \times 5 \times 20 + \pi \times 5^2 = 125\pi = 392.699$
	$\frac{1}{2}(26+10)\times15[=270]$			M1 Correct method for area of the trapezium. Allow $\left[2 \times \frac{1}{2}\right] (26+10) \times 15 \left[=540\right]$
	$2 \times "270" + "314.159" + "78.539" + 2 \times "340" + "520" [= 2132.699]$ oe			M1 dep on previous 3 method marks awarded. For a fully correct method to find the surface area.
	$"540" + "(100 + 25)\pi" + "680" + "520" [= 125\pi + 1740]$			runy correct method to find the surface area.
		2100		A1 cas awrt 2100 ignore units
(b)			3	X is the midpoint of HG
	$AX = \sqrt{13^2 + 20^2} \left[= \sqrt{569} = 23.85 \right]$ or			M1 for a correct method to find AX, AO or AN ignoring labelling
	$AO^2 = 13^2 + 20^2 + 15^2 [= 794]$ or $AN^2 = 13^2 + 20^2 + 20^2 [= 969]$			
	$\tan \angle AOX = \frac{\sqrt{569}}{15}$ or $\cos \angle AOX = \frac{15}{\sqrt{794}}$ or $\sin \angle AOX = \frac{\sqrt{569}}{\sqrt{794}}$			M1 dependent on 1 st M1 ft using trigonometry to find $\angle AOX$ or $\angle AON$ allow any notation for the angle
	"969" = "794" + 5 ² - 2×5×" $\sqrt{794}$ " cos $\angle AON$ or cos $\angle AON$ = $\frac{"794" + 5^2 - "969"}{2 \times 5 \times "\sqrt{794}}$ "			ft their values provided that they come from a correct method
	or $\tan \angle ANX = \frac{\sqrt{569}}{20}$ and $\frac{\sin \angle AON}{\sqrt{969}} = \frac{\sin ANX}{\sqrt{794}}$			Note that $[\angle AOX = 57.83 \text{ and } \angle ANX = 50.022]$
		122°		A1 cas awrt 122 or 123
				Total 8 marks

Questi	ion	Working	Answer	Mark	Notes
10	(a)	$\overrightarrow{AB} = 5\mathbf{b} - 10\mathbf{a} \text{ or } \overrightarrow{BA} = 10\mathbf{a} - 5\mathbf{b} \text{ or }$ $\overrightarrow{AN} = \frac{2}{5} (5\mathbf{b} - 10\mathbf{a}) [= 2\mathbf{b} - 4\mathbf{a}] \text{ or } \overrightarrow{BN} = \frac{3}{5} (10\mathbf{a} - 5\mathbf{b}) [= 6\mathbf{a} - 3\mathbf{b}]$		3	$AB \rightarrow AB \rightarrow BA$ May be seen within $AN \rightarrow BN$
	-	$\overrightarrow{ON} = 10\mathbf{a} + \frac{2}{5}("5\mathbf{b} - 10\mathbf{a''}) \text{ or } \overrightarrow{ON} = 5\mathbf{b} + \frac{3}{5}("10\mathbf{a} - 5\mathbf{b''})$			M1 condone invisible brackets
			6 a + 2 b		A1 cas do not isw but accept $2(3\mathbf{a} + \mathbf{b})$
((b)	$\frac{1}{2} \times 10 \times 10 \sin \angle BOM = 45 \text{ or } \angle BOM = 64.158$		4	M1 allow awrt 64.2
	-	$BM = 2 \times 10 \sin\left(\frac{"64.158"}{2}\right) \mathbf{or}$			M1 Allow for $BM = 10.62$ or $BM^2 = 112.8$ ft their $\angle BOM$
		$BM^2 = 10^2 + 10^2 - 2 \times 10 \times 10 \times \cos 64.158$ or			
		$\frac{10}{\sin\left(\frac{180 - "64.158"}{2}\right)} = \frac{BM}{\sin("64.158")}$			
		$OC^2 = 10^2 + \left(\frac{3}{4} \times "BM"\right)^2 - 2 \times 10 \times \left(\frac{3}{4} \times "BM"\right) \times \cos("\angle OBM")$			M1 for finding length <i>OC</i> awrt 78.8 ft their values for <i>BM</i> and angles provided correctly labelled or from correct working
		or $OC^2 = 10^2 + ("7.96")^2 - 2 \times 10 \times ("7.96") \times \cos("57.92")$ or			Č
		$OC^{2} = 10^{2} + \left(\frac{1}{4} \times "BM"\right)^{2} - 2 \times 10 \times \left(\frac{1}{4} \times "BM"\right) \times \cos\left("\angle OMB"\right)$			Note $\angle OMB = \angle OBM = \frac{180 - 64.15}{2} = 57.92$ or
		or $OC^2 = 10^2 + ("2.65")^2 - 2 \times 10 \times ("2.65") \times \cos("57.92")$ or			$\angle OMB = \angle OBM = \sin^{-1} \left(\frac{10 \times \sin ("64.15")}{BM} \right) = 57.92 \text{ but}$
		$OC^2 = 10^2 - \left(\frac{1}{2} \times "10.62"\right)^2 + \left(\frac{1}{4} \times "10.62"\right)^2$			the angle $\angle OMB$ alone does not imply the mark
			8.88		A1 wr accept answer in the range 8.87 - 8.90
					Total 7 marks

Que	stion	Working	Answer	Mark	Notes
11	(a)	$2(2)^3-(2)^2-5(2)-2$		2	M1 Substituting ±2 in consistently.
			= 0		A1 wr substituted 2 and = 0
	(b)	$2x^2 \pm 3x \pm \dots$		4	M1 makes progress to find the quadratic factor with a minimum of
					$2x^2 \pm 3x \pm \dots$
					(note that this could be seen in (a))
		$2x^2 + 3x + 1$			M1 correct 3-term quadratic. (note that this could be seen in (a))
		$(2x+1)(x+1)$ or $\frac{-3\pm\sqrt{3^2-4\times2}}{2\times2}$			M1ft their 3-term quadratic if working shown.
		$(2x+1)(x+1)$ or 2×2			If factorising it must multiply out to gain at least 2 correct terms.
					If using the quadratic equation it must be a correct equation but
					allow one error with the substitution
			-1, 2, -0.5		A1 dep on 2 nd M1 being awarded
	(c)	$(2) + (2)^2 + (5)$		3	M1 A correct use of the formula.
		$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 6 \times (-5)}}{2 \times 6}$ $y = 2("1.09")^3 - ("1.09")^2 - 5("1.09") - 2$			May be implied by correct values to 2 dp
					M1 ft their <i>x</i> -coordinates if full working shown.
		or			Implied by 2 correct y-coordinates
		or $y = 2("-0.76")^3 - ("-0.76")^2 - 5("-0.76") - 2$			Allow (awrt 1.1, awrt –6) (awrt –0.8, awrt 0.3)
			(1.09, -6.05)	_	A1 dependent on the 2 nd M1 being awarded
			and		Allow (awrt 1.1, awrt –6) (awrt –0.8, awrt 0.3)
					Condone missing brackets
			(-0.76, 0.34)		Allow $x =$ and $y =$ if correctly paired, eg working for y
					value underneath the corresponding x value
					NB can award M0M1A1
	(d)	-3.5, -5		1	B1 Both correct

(e)				
			4	B4 A fully correct graph going through 9 correct points plus a local maximum between x =-1 and x =-0.5 and between y =0.1 and y =0.5
				B3 a smooth curve going through any 5 correct points plus a local maximum between $x=-1$ and $x=-0.5$ and between $y=0.1$ and $y=0.5$ or 9 correct points joined with line segments
				B2 a smooth curve passing through any 4 correct points or a smooth curve going through any 3 correct points plus a local maximum between $x=-1$ and $x=-0.5$ or any 5 correct points joined with line segments
				B1 4 points correctly identified Allow for the point plotted at (-0.75, 0.3)
(f)	y = -2x - 3		3	M1 correct line identified or a straight line drawn through $(0, -3)$ with a negative gradient. Line need not intersect the curve
		-1.2, 0.3, 1.3		A2 dependent on correct line drawn allow values ± 0.1
				The correct line should go through $(-1.5,0)$ and $(0,-3)$ (if
				extended)
				(A1 dependent on M1, for one correct coordinate ± 0.1)
(g)	Tangent drawn		2	M1 for a clear tangent drawn
		5.5		A1 dependent on M1 being awarded
				allow in range 4 – 8 (if not from incorrect working)
				Total 19 marks

Ques	tion	Working	Answer	Mark	Notes
12		$v = \left[k\right] \left(48 - 3t^2\right)$		6	M1 Attempt to differentiate with at least one term correct.
		L 1()			No need for <i>k</i>
					Ignore erroneous labelling.
		$48 - 3t^2 = 0$			M1 dep on previous M1 for equating their 2-term expression
					to 0
					Note a 2-term expression should have only two terms when
					all brackets are expanded
		$\mathcal{L}(\mathcal{L}_{0}, \mathcal{L}_{0}, \mathcal{L}_{0},$			M2 For a correct equation for the difference in x leading to
		$k \left[\left(48 \times "4" - "4"^3 \right) - \left(48 \times 2 - 2^3 \right) \right] = 5 \Rightarrow k = \left \frac{1}{8} \right $			a value for k
		[0]			
					(M1 For equating the difference in x to 5 leading to a value
					for <i>k</i> follow through with their value of <i>t</i> for point <i>B</i> (allow if
					negative))
		"1"(40, 2, 0)			M1 for substituting their value of k and $t = 2$.
		$x = \frac{1}{8}(48 \times 2 - 8)$			
		O			This mark can be implied if x and k are correct
			11		A1 dep on two of the previous method marks being awarded
					Units not required.
					NB The award of 2 method marks and a correct answer of 11
					implies the full 6 marks
					Total 6 marks