

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P78953A
Publications Code 4MB1_02_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks can only be awarded when relevant M marks have been gained
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- cso correct solution only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

No working

If no working is shown, then correct answers may score full marks
If no working is shown, then incorrect (even though nearly correct) answers
score no marks.

With working

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: e.g. uses 252 instead of 255; follow through their working and deduct 2A marks from any gained provided the work has not been simplified. (Do not deduct any M marks gained.)

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used

Examiners should send any instance of a suspected misread to review (but see above for simple misreads).

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Questi	ion Working		Answer	Mark	Notes
1	84 (±2) seen or 276	(±2)		3	B1 may be seen in a calculation. May be implied by $\frac{7}{30}$ oe
	$\frac{84}{360} \times 30 \text{ oe e.g. } \frac{36}{360}$	$\frac{0-276}{360} \times 30$			M1 a correct calculation for the number of students who preferred chocolate ice cream - allow use of any angle (even if outside range) for chocolate (but must be a value and not x) May be seen in stages e.g. $\frac{360}{30}$ [=12] and $\frac{84}{12}$
			7		A1 cao
					Note: an answer with no working and in the range 6.8 – 7.17 implies B1M1 Note: B0M1A1 is possible
					Total 3 marks

Ques	tion	Working	Answer	Mark	Notes
2	(a)		an arc centre <i>P</i> with radius	1	B1 for a correct arc
			3 cm		NB The arc does not have to touch/cross <i>PQ</i> and <i>PS</i>
	(b)		a line parallel to <i>QR</i> drawn	1	B1 for a correct line
			6 cm from <i>QR</i>		NB The line does not have to touch/cross <i>PQ</i> and <i>SR</i>
	(c)		a correct bisector with arcs	2	B2 for a correct bisector with arcs that have been drawn
			shown		from a point on $SP(x)$ and a point on $SR(y)$ such that $Sx = $
					Sy NB The bisector does not have to touch/cross PQ but
					must remain within the tolerance if extended to PQ
					(B1 for a bisector without arcs or correct arcs that cross or
					would cross if tolerance lines were extended)
					NB the intersection of the arcs and the point S must be two
					distinct points which allow for a straight line to be drawn
					for either B2 or B1
	(d)		correct region indicated	1	B1ft only follow through if they have an arc centre <i>P</i> and a
					line parallel to QR and at least B1 for part (c) with the 3
					loci being a boundary of the area
					NB The arc must touch/cross PQ and PS , the line must
					touch/cross <i>PQ</i> and the bisector and the bisector must
					touch/cross the parallel line i.e. it must be a fully bounded
					area
					Total 5 marks

Ques	tion	Working	Answer	Mark	Notes	
3	(a)		3.47×10^7	1	B1 cao	
	(b)		0.0098	1	B1 cao	
	(c) (i)	108×10^{240} or 10.8×10^{241} or 1.08×10^{n} or $k \times 10^{242}$		2	M1 where <i>n</i> is any integer or $1 \le k < 10$ or for a correct answer in any form	
			1.08×10 ²⁴²		A1 cao	
	(ii)	$(54\times10^{120})+(2\times10^{120}) \text{ or } (5.4\times10^{121})+(0.2\times10^{121}) \text{ or } 56\times10^{120} \text{ or } 5.6\times10^n \text{ or } k\times10^{121}$		2	M1 where <i>n</i> is any integer or $1 \le k < 10$ or for a correct answer in any form	
			5.6×10^{121}		A1 cao	
					Total 6 marks	

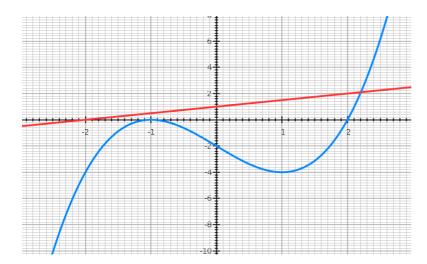
Ques	stion	Working	Answer	Mark	Notes
4	(a)	$\frac{50}{360} \times \pi \times 5^2 \left[= \frac{125}{36} \pi = 10.908 \right]$	10.9m ²	2	M1 a correct method to find the area of the sector. May be implied by awrt 10.9 A1 awrt 10.9 (Allow $\frac{125}{36}\pi$ or 11 if
	(b)	$BC = 5\sin 40$ or $BC = 5\cos 50$ [=3.213938048] $CD = 5\cos 40$ or $CD = 5\sin 50$ [=3.830222216]		4	from correct working) M1 for a correct method to find BC or CD May be implied by awrt 3.2 or awrt 3.8 Allow equivalent equations e.g. $\frac{\sin 40}{x} = \frac{\sin 90}{5}$
		$\frac{1}{2} \times 5 \times \sin 40 \times 5 \times \cos 40 \text{or} \frac{1}{2} \times 5 \times \sin 40 \times 5 \times \sin 50$ $\text{or} \frac{1}{2} \times 5 \times \cos 50 \times 5 \times \cos 40 \text{or} \frac{1}{2} \times 5 \times \cos 50 \times 5 \times \sin 50$ $\text{or} \frac{1}{2} \times 5 \times \sin 40 \times \sqrt{5^2 - (5\sin 40)^2} \text{or} \frac{1}{2} \times 5 \times \cos 50 \times \sqrt{5^2 - (5\cos 50)^2}$			M1 for a correct method to find the area of the triangle ft their BC and/or their CD May be implied by awrt 6.2
		or $\frac{1}{2} \times 5 \times \cos 40 \times \sqrt{5^2 - (5\cos 40)^2}$ or $\frac{1}{2} \times 5 \times \sin 50 \times \sqrt{5^2 - (5\sin 50)^2}$ [=6.155048456]			
		("10.9"+"6.15")×35 [17.06×35 = 597.217]			M1 for correct method ft their answer to part (a) and their triangle <i>BCD</i> . Either the area must be labelled triangle <i>BCD</i> or it must be clear that they are finding the area of triangle <i>BCD</i> . It must be 2 areas added together and multiplied by 35
			597		A1 awrt 597
		Cas			Total 6 marks

Ques	tion	Working	Answer	Mark	Notes
5	(a)	$\frac{3850}{11} \times 2$		2	M1 for $\frac{3850}{11} \times n$ where $n = 2$ or 3 or 6
			700		A1 cao
	(b)	$\frac{15.95}{116} \times 100$		2	M1 for $x \times 1.16 = 15.95$ or $x \times 116 = 15.95$ or $\frac{15.95}{116}$
			[£] 13.75		A1 cao
	(c)	$1500 \times 7 + 600 \times 11 (= 10500 + 6600 = 17100)$		4	M1 for a correct method to find the total cost of the towels. May be seen as two separate calculations and added at any stage
		$\frac{3}{5} \times 1500 \times 15 + \frac{95}{100} \times 600 \times 18 [= 13500 + 10260 = 23760] \text{ or}$ $\left(\frac{3}{5} \times 1500 \times 15 - 10500\right) + \left(\frac{95}{100} \times 600 \times 18 - 6600\right)$ $[= 3000 + 3600 = 6660]$			M1 for a correct method to find the income from selling items or a correct method to find the total profit. May be seen as two separate calculations and added at any stage (Condone 95% for $\frac{95}{100}$)
		"23760"-"17100" ×100 or "6660" / "17100" ×100			M1 for a correct method to find the percentage profit ft their total cost and their income from selling items/total profit Allow equivalent calculations e.g. $\frac{23760}{17100} \times 100 - 100$
			38.9[%]		A1 awrt 39
	(d)		7691	1	B1 awrt 7691
		Cas			Total 9 marks

Que	stion	Working	Answer	Mark	Notes
6	(a)	21 + x + 37 = 2(10 + 21)		2	M1 for a correct equation May be implied a correct answer
					on its own
			4		A1 cao
	(b)		50	1	B1 cao
	(c)		21	1	B1 cao
	(d)		71	1	B1 cao
	(e)	80×1.125×1.3		2	M1 correct method to find no of students
					Condone 80×112.5%×130% May be seen as separate
					calculations
			117		A1 cao
		Cas			Total 7 marks

Ques	tion	Working	Answer	Mark	Notes
7	(a)	red $ \frac{\frac{9}{14}}{\frac{10}{15}} $ red $ \frac{\frac{10}{15}}{\frac{5}{14}} $ yellow $ \frac{\frac{10}{14}}{\frac{1}{14}} $ red $ \frac{\frac{5}{14}}{\frac{1}{14}} $ yellow		2	B2 for LH branch $\frac{5}{15}$ oe and RH branches $\frac{9}{14} \frac{5}{14} \frac{10}{14} \frac{4}{14}$ oe (B1 for any two correct pairs of branches e.g. $\frac{5}{15}$ with $\frac{9}{14} \frac{5}{14}$ or $\frac{5}{15}$ with $\frac{10}{14} \frac{4}{14}$ or $\frac{9}{14} \frac{5}{14}$ with $\frac{10}{14} \frac{4}{14}$)
	(b)	$\frac{10}{15} \times \frac{9}{14} + \frac{5}{15} \times \frac{4}{14} \text{ or}$ $1 - \left(\frac{10}{15} \times \frac{5}{14} + \frac{5}{15} \times \frac{10}{14}\right)$		2	M1 fully correct method ft their tree diagram Do not ft any probability greater than 1
			$\frac{11}{21}$		A1 oe Allow awrt 0.52
	(c)	$\left(\frac{10}{15} \times \frac{9}{14} \times \frac{6}{9}\right) + \left(\frac{5}{15} \times \frac{4}{14} \times \frac{5}{9}\right)$ oe $\left[=\frac{2}{7} + \frac{10}{189} = \frac{64}{189}\right]$	27 32	3	M2 probability of all the same colour ft their tree diagram. Do not ft any probability greater than 1 (M1 probability of all being red e.g. $\frac{10}{15} \times \frac{9}{14} \times \frac{6}{9} \left[= \frac{2}{7} \right]$ oe ft their tree diagram. Do not ft any probability greater than 1) A1 oe Allow awrt 0.84
					SC award M1M0A0 for $\frac{a}{a+b}$ oe where a and b are the
					product of three probabilities and $a \neq b$
		Cas			Total 7 marks

Ques	stion	Working	Answer	Mark	Notes
8	(a)	$2x^2y = a$ oe		4	M1 for a correct expression for the volume of the cuboid
		$[S =]2 \times 2x^{2} + 2 \times xy + 2 \times 2xy [= 4x^{2} + 6xy]$			M1 for a correct expression for the surface area of the cuboid. Need not be simplified.
		$y = \frac{a}{2x^2}$ oe or $xy = \frac{a}{2x}$ oe or $2xy = \frac{a}{x}$ oe or $\frac{2x^2y}{x} = \frac{a}{x}$			M1 for a correct rearrangement of the volume expression May be implied by an embedded expression in <i>S</i>
		$[S =]4x^2 + 6x \times \frac{a}{2x^2}$ or $[S =]4x^2 + 6 \times \frac{a}{2x}$ or $[S =]4x^2 + 3 \times \frac{a}{2x}$	or		A1 dep on M3 with no errors seen We condone S = omitted from the final answer
		$[S =]4x^{2} + 3 \times \frac{2x^{2}y}{x}$ Leading to the given answer $S = 4x^{2} + 3ax^{-1}$			
	(b)	$S = 4x^2 + 3ax^{-1}$		5	M1 for writing $\frac{3a}{x}$ as $3ax^{-1}$ May be implied by $3ax^{-2}$ oe seen in $\frac{dS}{dx}$
		$\frac{\mathrm{d}S}{\mathrm{d}x} = 8x - 3ax^{-2} = 0 \mathrm{oe}$			M1 for differentiating one term correctly and putting equal to 0 May be implied by $8x^3 - 3a = 0$
		$4x^{2} + \frac{3a}{x} = 400[\Rightarrow 4x^{3} + 3a = 400x]$ Solving simultaneously leading to $12x^{3} = 400x$ oe or $4\left(\sqrt[3]{\frac{3a}{8}}\right)^{3} + 3a = 400\left(\sqrt[3]{\frac{3a}{8}}\right)$ oe			M1 dependent on a fully correct expression for $\frac{dS}{dx} = 0$ For putting S = 400 and solving simultaneously to get a correct equation in one variable. May be implied by $x = \sqrt{\frac{100}{3}}$ [=5.77] oe May be implied by a correct equation of the form $a^n =$
		$8\left(\sqrt{\frac{100}{3}}\right)^{3} - 3a = 0 \text{ oe or } 4\left(\sqrt{\frac{100}{3}}\right)^{3} + 3a = 400\left(\sqrt{\frac{100}{3}}\right) \text{ oe}$ or $a^{\frac{2}{3}} = \frac{400}{9}\left(3^{\frac{1}{3}}\right) \text{ oe}$			M1 dependent on previous M mark for substitution of $x = \sqrt{\frac{100}{3}}$ oe into an equation to find a value of a or reducing to a correct equation with $a^n =$ May be implied by awrt 513
			513		A1 awrt 513 Allow $\frac{8000\sqrt{3}}{27}$
		Cas			Total 9 marks

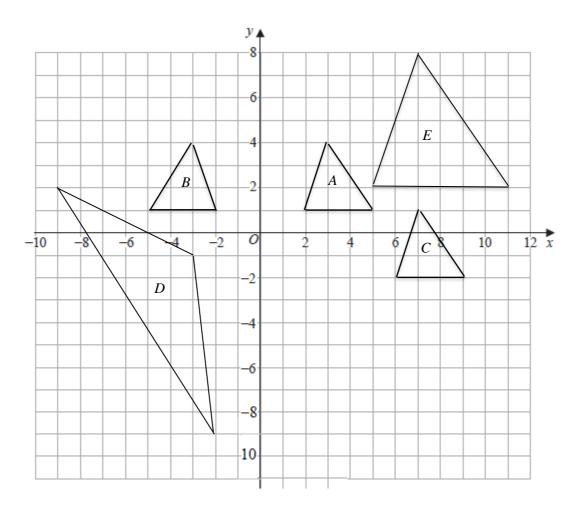

Question	Working	Ans	Mark	Notes
9 (a)	60° or 120° or 30°		3	M1 for seeing any of these angles. May be
				seen in the diagram or embedded in a calculation
	Area of equilateral triangle	l		M1 for splitting hexagon into six triangles and
	$\begin{bmatrix} \frac{1}{2} \times 3 \times 3 \times \sin 60 \times 6 & \text{or} & \frac{1}{2} \times 3 \times 3 \times \sin 120 \times 6 & \text{or} & \frac{1}{2} \times 3 \times 3 \times \cos 30 \times 6 & \text{or} & \frac{1}{2} \times 3 \times 1.5 \times \tan 60 \times 6 & \text{or} & \frac{1}{2} \times 3 \times \frac{1.5}{\tan 60} \end{bmatrix}$	5 × 6		finding the area or
		30		for splitting hexagon into two trapezia and
	or $\frac{1}{2} \times 3 \times \sqrt{3^2 - 1.5^2} \times 6$ or $\frac{1}{2} \times 3 \times \frac{1.5 \sin 60}{\sin 30} \times 6$ or $\frac{1}{2} \times 3 \times \sqrt{1.5^2 + 3^2 - 2 \times 1.5 \times 3 \cos 60} \times 6$ or			finding the area or
				for splitting hexagon into two triangles and a
	$\sqrt{4.5(4.5-3)(4.5-3)(4.5-3)} \times 6$			rectangle/four triangles and two rectangles and
	Area of trapezium $((6+3)) \qquad ((6+3)) \qquad ((6+3)$			finding the area
	$\left(\frac{\left(6+3\right)}{2}\times3\sin 60\right)\times2 \text{or} \left(\frac{\left(6+3\right)}{2}\times3\cos 30\right)\times2 \text{or} \left(\frac{\left(6+3\right)}{2}\times1.5\tan 60\right)\times2 \text{or} \left(\frac{\left(6+3\right)}{2}\times\frac{1.5}{\tan 30}\right)\times2$	or		May be seen in stages
	$\left(\frac{\left(6+3\right)}{2} \times \sqrt{3^2-1.5^2}\right) \times 2 \text{or} \left(\frac{\left(6+3\right)}{2} \times \frac{1.5\sin 60}{\sin 30}\right) \times 2 \text{or} \left(\frac{\left(6+3\right)}{2} \times \sqrt{1.5^2+3^2-2\times1.5\times3\cos 60}\right) \times 2$			May be implied by awrt 23.4
	Area of 2 triangles + rectangle or Area of 4 triangles + 2 rectangles			
	$\begin{bmatrix} \frac{1}{2} \times 2 \times 3\sin 60 \times 1.5 \times 2 + 3 \times 2 \times 3\sin 60 & \text{or} & \frac{1}{2} \times 2 \times 3\cos 30 \times 1.5 \times 2 + 3 \times 2 \times 3\cos 30 & \text{or} \\ 2 & & & & & & & & & & & & & & & & & &$			
	$\begin{vmatrix} \frac{1}{2} \times 2 \times 1.5 \tan 60 \times 1.5 \times 2 + 3 \times 2 \times 1.5 \tan 60 & \text{or } \frac{1}{2} \times 2 \times \frac{1.5}{\tan 30} \times 1.5 \times 2 + 3 \times 2 \times \frac{1.5}{\tan 30} & \text{or} \end{vmatrix}$			
	$\frac{1}{2} \times 2 \times \sqrt{3^2 - 1.5^2} \times 1.5 \times 2 + 3 \times 2 \times \sqrt{3^2 - 1.5^2} \text{or} \frac{1}{2} \times 2 \times \frac{1.5 \sin 60}{\sin 30} \times 1.5 \times 2 + 3 \times 2 \times \frac{1.5 \sin 60}{\sin 30} \text{or}$			
	$\frac{1}{2} \times \frac{3\sin 120}{\sin 30} \times 1.5 \times 2 + 3 \times \frac{3\sin 120}{\sin 30} \text{or} \frac{1}{2} \times 2 \times \sqrt{1.5^2 + 3^2 - 2 \times 1.5 \times 3\cos 60} \times 1.5 \times 2 + 3 \times 2 \times \sqrt{1.5^2 + 3^2 - 2 \times 1.5 \times 3\cos 60}$	cos 60		
	or $\frac{1}{2}\sqrt{3^2 + 3^2 - 2 \times 3 \times 3\cos 120} \times 1.5 \times 2 + 3 \times \sqrt{3^2 + 3^2 - 2 \times 3 \times 3\cos 120}$ or			
	$\sqrt{\frac{6+3\sqrt{3}}{2}} \left(\frac{6+3\sqrt{3}}{2} - 3\right) \left(\frac{6+3\sqrt{3}}{2} - 3\right) \left(\frac{6+3\sqrt{3}}{2} - 3\sqrt{3}\right) \times 2 + 3 \times 3\sqrt{3} \text{or}$			
	$\sqrt{\frac{9+3\sqrt{3}}{4} \left(\frac{9+3\sqrt{3}}{4}-3\right) \left(\frac{9+3\sqrt{3}}{4}-1.5\right) \left(\frac{9+3\sqrt{3}}{4}-\frac{3\sqrt{3}}{2}\right)} \times 4 + 2 \times 3 \times \frac{3\sqrt{3}}{2}$			

		23.4		A1 awrt 23.4 or exact value of $\frac{27\sqrt{3}}{2}$ oe
--	--	------	--	--

(b)	$[XA = XD =]\sqrt{5^2 + 3^2} = \sqrt{34} = 5.830$	6	M1 for correct use of Pythagoras to find XA or XD May be implied by $\sqrt{34} = \text{awrt} 5.8 \text{ or } \frac{\sqrt{34}}{2}$
	$[XM = MD] \frac{1}{2} \sqrt{5^2 + 3^2} \left[= \frac{\sqrt{34}}{2} = 2.915 \right]$		M1 for correct use of midpoint to find \overline{XM} May be implied by $\frac{\sqrt{34}}{2} = \text{awrt } 2.9$
	$[AM =]\sqrt{\left(3 + \frac{3}{2}\right)^2 + \left(\frac{5}{2}\right)^2} \left[= \frac{\sqrt{106}}{2} = 5.1478 \right] \text{ or}$		M1 for a correct method to find AM May be implied by $\frac{\sqrt{106}}{2}$ or awrt 5.15 Allow 5.14
	$[AM =]\sqrt{6^2 + \left(\frac{\sqrt{34}}{2}\right)^2 - 2 \times 6 \times \frac{\sqrt{34}}{2}\cos(59.036)} \left[= \frac{\sqrt{106}}{2} = 5.1478 \right]$		May be seen in stages You may find these expressions useful
	or $[AM =]\sqrt{34^2 + \left(\frac{\sqrt{34}}{2}\right)^2 - 2 \times \sqrt{34} \times \frac{\sqrt{34}}{2} \cos(61.927)} = \frac{\sqrt{106}}{2} = 5.1478$		$\cos^{-1} \frac{3}{\sqrt{34}} = \sin^{-1} \frac{5}{\sqrt{34}} = \tan^{-1} \frac{5}{3} = 59.036$ $\cos^{-1} \left(\frac{\sqrt{34}^2 + \sqrt{34}^2 - 6^2}{2\sqrt{34}\sqrt{34}} \right) = 61.927$
			Allow decimal equivalents M1 dependent on 3rd M mark for correct substitution into Cosine
	$\sqrt{34}^2 = \left(\frac{\sqrt{34}}{2}\right)^2 + \left(\frac{\sqrt{106}}{2}\right)^2 - 2 \times \frac{\sqrt{34}}{2} \times \frac{\sqrt{106}}{2} \times \cos AMX$ or		Rule or correct substitution into the Sine Rule
	$6^{2} = \left(\frac{\sqrt{34}}{2}\right)^{2} + \left(\frac{\sqrt{106}}{2}\right)^{2} - 2 \times \frac{\sqrt{34}}{2} \times \frac{\sqrt{106}}{2} \times \cos AMD \text{ or}$		Allow decimal equivalents Allow $\frac{\sin \angle AMD}{6} = \frac{\sin 59.036}{\sqrt{106}}$
	$\left(\frac{\sqrt{34}}{2}\right)^2 = 6^2 + \left(\frac{\sqrt{106}}{2}\right)^2 - 2 \times 6 \times \frac{\sqrt{106}}{2} \times \cos MAD \text{ or}$		$\frac{\sqrt{100}}{2}$ may be implied by 5 th M mark
	$\frac{\sin \angle AMX}{\sqrt{34}} = \frac{\sin (61.927)}{\sqrt{106}} \text{ or } \frac{\sin \angle MAD}{\sqrt{34}} = \frac{\sin 59.036}{\sqrt{106}}$		
	2 2 2		

$\cos \angle AMX = \frac{\left(\frac{\sqrt{34}}{2}\right)^{2} + \left(\frac{\sqrt{106}}{2}\right)^{2} - \sqrt{34}^{2}}{2 \times \frac{\sqrt{34}}{2} \times \frac{\sqrt{106}}{2}} \text{ or } \cos \angle AMD = \frac{\left(\frac{\sqrt{34}}{2}\right)^{2}}{2 \times 6 \times \frac{\sqrt{106}}{2}} \text{ or } \sin \angle AXM = \frac{\sin(61)}{2} = \frac$	2 Allow sin (AMD = SIII 39.030)
	88.1 A1 87.9 – 88.3 Do not ISW e.g. 180 – 88.1 = 91.9 would score A0
	Do not accept answers in the range that have come from incorrect
	methods
Wr	Total 9 marks

Question		Working	Answer	Mark	Notes
10	(a)	$(2)^3 - 3(2) - 2$		2	M1 Attempt to find f (±2) (M0 if long division used)
			$(2)^3 - 3(2) - 2 = 0$		A1 Find $f(2)$ must see working including the " = 0" Allow $8 - 6 - 2 = 0$ as a minimum
	(b)	$[(x-2)](x^2+2x+1)$ $2 \mid 1$	0 -3 -2 2 4 2 2 1 0	3	M1 (For any two terms of the quadratic factor). May be seen as part of long division of synthetic long division (in which case look for two correct non-zero terms on the bottom row).
		$\left[\left(x-2\right)\right]\left(x^2+2x+1\right)$			A1 fully correct quadratic factor
			$(x-2)(x+1)^2$		A1 fully correct solution with no incorrect working seen gains full marks, may be awarded from part (a). Allow $(x-2)(x+1)(x+1)$ ISW
	(c)		0, -0.6, -3.1	2	B2 All values correct to 1 dp or better (actual values are 0, -0.625, -3.125) (B1 for 2 values correct to at least 1dp)
	(d)	2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Curve drawn	3	B3 Fully correct smooth curve ±1 small square. Allow if curve goes through points, even if the points are not plotted. (B2 for at least 7 points plotted correctly ±1 small square or a curve/line segments that goes through at least 7 correct points ±1 small square. (B1 For at least 5 points plotted correctly ±1 small square or a curve/line segments that goes through at least 5 correct points ±1 small square.
	(e)	$x^3 - 3x - 2 = 0.5x + 1 \text{ or } y = 0.5x$	+1	3	M1 for identifying the required line` (allow $0.5x+1$ or $f(x) = 0.5x+1$) May be seen on the diagram Allow a straight line drawn through $(0, 1)$ with a positive gradient.
					M1 a correct line that intersects the curve (a correct line drawn implies M2)
			(x=) 2.2		A1 dependent on a correct line being drawn Allow answers in the range 2.1 to 2.3 inclusive (dep on M2) NB: if y values given as well then A0
					Total 13 marks



Ques	stion	Working		Answer	Mark	Notes
11	(a)	$\left[x^2 + 6x + 8 = (x+4)(x+2)\right]$)		3	B1 factorising quadratic
		$\frac{x+x+4}{(x+4)(x+2)} \left[= \frac{2x+4}{(x+4)(x+2)} = \frac{2(x+2)}{(x+4)(x+2)} \right]$				M1 for writing both fractions with a common denominator (can be written as two fractions with a common denominator or one single fraction) This step may be done before or without factorising eg $\frac{x(x+2)+x^2+6x+8}{(x^2+6x+8)(x+2)}$ oe
				$\frac{2}{x+4}$		A1 cao dep on M1 Do not ISW
	(b)	f(2) = 4 or $\frac{6 - \frac{1}{2}x^2 + 5}{2(6 - \frac{1}{2}x^2) + 3}$			2	M1 for $f(2) = 4$ May be seen as a substitution into $h(x)$ e,g. $\frac{4+5}{2(4)+3}$ or substitution of $f(x)$ into $h(x)$
				9 11		A1 Allow awrt 0.82 $\frac{9}{11} = 0.8181$
	(c)	2xy + 3y = x + 5			4	M1 For a correct expression. May use 2 other letters eg $2xy+3x = y+5$ (from interchanging x and y as a first step)
			3y - 5 = x - 2xy			M1 Collect all their x terms on one side (must be more than one) Allow 1 sign error. Condone both sides being over x or y eg $\frac{2xy-x}{x} = \frac{5-3y}{x}$ May use other letters eg $2xy-y=5-3x$
		$x(2y-1) = 5-3y \qquad \qquad 3$	y-5=x(1-2y)			M1 Isolating term in <i>x</i> ie taking <i>x</i> out as common factor so it only appears once in the equation
				$\frac{5-3x}{2x-1}$		A1 oe eg $\frac{3x-5}{1-2x}$ must be in terms of x
	(d)	$\frac{x+5}{2x+3} = \frac{5-3x}{2x-1}$ oe			3	M1 for recognising that question can be answered by solving $h(x) = h^{-1}(x)$

8	$8x^2 + 8x - 20[=0]$ oe	$\frac{-1+\sqrt{11}}{2}$	May be implied by a correct quadratic ft answer to part (c) for this method mark only May be implied by $(x+5)(2x-1)=(5-3x)(2x+3)$ or $2x^2+9x-5=15+x-6x^2$ M1 for a correct three term quadratic A1 oe Allow awrt 1.16 (Condone 1.15) Must reject other root if seen
	$hh(x) = \frac{\frac{x+5}{2x+3} + 5}{2\left(\frac{x+5}{2x+3}\right) + 3} \text{ or } $ $h^{2}(x) = \frac{x+5+5(2x+3)}{2(x+5)+3(2x+3)} \text{ or } $ $h^{2}(x) = \frac{11x+20}{8x+19}$		M1 for a correct expression for $h^2(x)$ May be implied by a correct quadratic/cubic May be implied by $\frac{11x+20}{8x+19} = x$ or $11x+20 = x(8x+19)$
	$8x^{2} + 8x - 20[=0]$ oe or $6x^{3} + 40x^{2} - 16x - 60[=0]$ oe		M1 for a correct three term quadratic or a correct cubic Allow equivalent expressions e.g $40x^2 - 16x - 60 = -16x^3$
		$\frac{-1+\sqrt{11}}{2}$	A1 oe Allow awrt 1.16 (Condone 1.15) Must reject other root/roots if seen Total 12 marks

Question		Working	Answer	Mark	Notes	
12	(a)		Enlargement	3	B1 Allow enlarge. Do not allow bigger B0 if multiple transformations stated. Multiple more than one of reflection (mirrored), rotation is stated eg a vector or SF or equation of a line	(turn), translation (move),
			Centre (-1, 0)		transformations B1 for (-1, 0) Do not accept if written as a column vector	These 2 marks can still be awarded if multiple
			SF 2	1	B1 for 2	transformations are stated
	(b)		Correct triangle B drawn	2	B2 correct triangle drawn (-2, 1) (-5, 1) (-3, 4) Award 2 marks for a correct triangle drawn irreworking space. (B1 for 2 correct vertices plotted the correct size and orientation, or 3 correct vertices SC B1 for a correct reflection applied to triangle (2, -1) (5, -1) (3, -4)] Ignore triangle B not lab	espective of working in the ed correctly or a triangle of rtices listed)) le A in the <i>x</i> -axis. [vertices
	(c)		Correct triangle C drawn	2	M1 for a triangle translated either 4 units to the A1 correct triangle drawn (6, -2) (9, -2) (7, 1) labelled	e right or 3 units down.
	(d) (i)	$ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 1 \end{pmatrix} $		3	M1 for the intention to multiply the right way. May be implied by writing the matrices in the stating or plotting one point.	
		$= \begin{pmatrix} -3 & -2 & -9 \\ -1 & -9 & 2 \end{pmatrix}$			M1 for at least two correct columns or correctly correct points	y stating or plotting two
			correct triangle D drawn		A1 correct triangle drawn NB Award 3 marks for a correct triangle drawn the working space. Ignore triangle D not labelle	
	(ii)	$ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} k & -5 \\ 1 & -1 \end{pmatrix} $ or $ \begin{pmatrix} k & -5 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} $ or $ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} $ or $ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} $ or $ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} $ or $ \begin{pmatrix} -2 & 1 \\ 1 & -3 \end{pmatrix} $		4	M1 for intention to multiply the two matrices, once multiplied or finding the determinant of the	implied by one correct value

$\det\begin{pmatrix} -2 & 1\\ 1 & -3 \end{pmatrix} = (-2 \times -3 - 1 \times 1) \text{ and}$ $\det\begin{pmatrix} k & -5\\ 1 & -1 \end{pmatrix} = (k \times -15 \times 1)$	
$\begin{pmatrix} -2k+1 & 9 \\ k-3 & -2 \end{pmatrix} \text{ or } \begin{pmatrix} -2k-5 & k+15 \\ -3 & 4 \end{pmatrix} \text{ or } $ $(-2\times-3-1\times1) (k\times-15\times1)=5$	M1 for matrix with 3 or 4 correct elements or for multiplying the two determinants and equating to 5
-2(-2k+1)-9(k-3)=5 or $4(-2k-5)+3(k+15)=5 or 5(-k+5)=5$	M1 dependent on previous M mark for forming a correct equation for their determinant
4	A1
	Total 14 marks

