

1. For all values of x, $x^2 + 6x - 2 = (x + p)^2 + q$

Find the value of p and the value of q.

$$p = q =$$
(Total 2 marks)

2. Write $x^2 + 10x + 3$ in the form $(x + a)^2 + b$, where a and b are constants.

(a) Express $x^2 - 4x - 10$ in the form $(x + a)^2 + b$ **3.**

Hence write down the minimum value of $y = x^2 - 4x - 10$ (*b*)

(.....),(.....)

- 4. The expression $x^2 8x + 21$ can be written in the form $(x a)^2 + b$ for all values of x.
 - (a) Find the value of a and the value of b.

The equation of a curve is y = f(x) where $f(x) = x^2 - 8x + 21$.

(b) Write down the coordinates of the minimum point of this curve.

(.....),(.....)

(a) Express $x^2 - 6x + 10$ in the form $(x + a)^2 + b$ **5.**

Hence write down the minimum value of $y = x^2 - 6x + 10$ (*b*)

(.....),(.....)

6. (a) Express $x^2 + 4x - 12$ in the form $(x + a)^2 + b$

Hence, or otherwise, solve $x^2 + 4x - 12 = 0$ (*b*)

By completing the square solve $x^2 + 8x + 13 = 0$ 7.

Give your answers in surd form.

$$x = \dots or x = \dots$$

8. By completing the square find the minimum point of the curve $y = x^2 + 10x + 3$