E目 EXAM PAPERS PRACTICE

Vectors

Question Paper

O is the origin.
$A B C D E F$ is a regular hexagon and O is the midpoint of $A D$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(a) $\overrightarrow{B E}$,
(b) $\overrightarrow{D B}$,
(c) the position vector of E.

A and B have position vectors \mathbf{a} and \mathbf{b} relative to the origin O.
C is the midpoint of $A B$ and B is the midpoint of $A D$.
Find, in terms of \mathbf{a} and \mathbf{b}, in their simplest form
(a) the position vector of C,
(b) the vector $\overrightarrow{C D}$.

O is the origin, $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{C B}=4 \mathbf{a}$.
M is the midpoint of $A B$.
(a) Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(i) the vector $\overrightarrow{A B}$,
(ii) the position vector of M.
(b) Mark the point D on the diagram where $\overrightarrow{O D}=3 \mathbf{a}+\mathbf{c}$.

O is the origin and $O A B C$ is a parallelogram.
$C P=P B$ and $A Q=Q B$.
$\overrightarrow{O A}=\mathrm{a}$ and $\overrightarrow{O C}=\mathrm{c}$.
Find in terms of a and c, in their simplest form,
(a) $\overrightarrow{P Q}$,
(b) the position vector of M, where M is the midpoint of $P Q$.

$\overrightarrow{A B}=\mathbf{a}+t \mathbf{b}$ and $\overrightarrow{C D}=\mathbf{a}+(3 t-5) \mathbf{b}$ where t is a number.
Find the value of t when $\overrightarrow{A B}=\overrightarrow{C D}$.

The origin O is the centre of the octagon $P Q R S T U V W$.
$\overrightarrow{U V}=\mathbf{a}$ and $\overrightarrow{W P}=\mathbf{b}$.
(a) Write down in terms of \mathbf{a} and \mathbf{b}
(i) $\overrightarrow{V W}$,
(ii) $\overrightarrow{T U}$,
(iii) $\overrightarrow{T P}$,
(iv) the position vector of the point P.
(b) In the diagram, 1 centimetre represents 1 unit.

Write down the value of $|\mathbf{a}-\mathbf{b}|$.

EXAM PAPERS PRACTICE

$O A B C$ is a parallelogram. $\overrightarrow{O A}=$ a and $\overrightarrow{O C}=\mathrm{c}$.
M is the mid-point of $O B$.
Find $\overrightarrow{M A}$ in terms of a and c .
[2]
(a) D is the point $(2,-5)$ and $\overrightarrow{D E}=\binom{7}{1}$.

Find the co-ordinates of the point E.
(b) $\mathbf{v}=\binom{t}{12}$ and $|\mathbf{v}|=13$.

Work out the value of t, where t is negative.

EXAM PAPERS PRACTICE
The diagram shows a parallelogram $O C E G$.

NOT TO
SCALE
O is the origin, $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
$B H F$ and $A H D$ are straight lines parallel to the sides of the parallelogram.
$\overrightarrow{O G}=3 \overrightarrow{O A}$ and $\overrightarrow{O C}=2 \overrightarrow{O B}$.
(a) Write the vector $H \vec{E}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Complete this statement.
$\mathbf{a}+2 \mathbf{b}$ is the position vector of point.
(c) Write down two vectors that can be written as $3 \mathbf{a}-\mathbf{b}$.
(a) $\overrightarrow{G H}=\binom{6}{-4}$

Find
(i) $5 \overrightarrow{G H}$,
(ii) $\overrightarrow{H G}$.
(b) $\binom{6}{7}+\binom{2}{y}=\binom{8}{3}$

Find the value of y.

$$
\overrightarrow{B C}=\binom{2}{3} \quad \overrightarrow{B A}=\binom{-5}{6}
$$

(a) Find $\overrightarrow{C A}$.
(b) Work out $|\overrightarrow{B A}|$.

GHJK is a quadrilateral.
$\overrightarrow{G H}=\mathbf{a}, \overrightarrow{J H}=\mathbf{b}$ and $\overrightarrow{K J}=\mathbf{c}$.
L lies on $G K$ so that $L K=3 G L$.
Find an expression, in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}, for $\overrightarrow{G L}$.

A is the point $(-1,1)$ and B is the point $(8,7)$.
(a) Write $\overrightarrow{A B}$ as a column vector.
(b) Find $|\overrightarrow{A B}|$.
(c) $\overrightarrow{A C}=2 \overrightarrow{A B}$.

Write down the co-ordinates of C.

$O P Q R$ is a parallelogram, with O the origin.
M is the midpoint of $P Q$.
$\xrightarrow[O P]{ }$ and $R Q$ are extended to meet at S.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
(a) Find, in terms of \mathbf{p} and \mathbf{r}, in its simplest form,
(i) $\overrightarrow{O M}$,
(ii) the position vector of S.
(b) When $\overrightarrow{P T}=-\frac{1}{2} \mathbf{p}+\mathbf{r}$, what can you write down about the position of T ?

$O A B C D E$ is a regular polygon.
(a) Write down the geometrical name for this polygon.
(b) O is the origin. $\overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.

Find, in terms of \mathbf{b} and \mathbf{c}, in their simplest form,
(i) $\overrightarrow{B C}$,
(ii) $\overrightarrow{O A}$,
(iii) the position vector of E.

NOT TO
SCALE

In the diagram, O is the origin.
$\overrightarrow{O C}=\mathrm{c}$ and $\overrightarrow{O D}=\mathrm{d}$.
E is on $C D$ so that $C E=2 E D$.
Find, in terms of c and d , in their simplest forms,
(a) $\overrightarrow{D E}$,
(b) the position vector of E.

NOT TO
SCALE
O is the origin and K is the point on $A B$ so that $A K: K B=2: 1$. $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

Find the position vector of K.
Give your answer in terms of \mathbf{a} and \mathbf{b} in its simplest form.

Question 18

O is the origin, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$.
Z is a point on $P Q$ such that $P Z: Z Q=5: 2$.

Work out, in terms of \mathbf{p} and \mathbf{q}, the position vector of Z.
Give your answer in its simplest form.

EXAM PAPERS PRACTICE

Points A and B are marked on the grid.

$$
\overrightarrow{B C}=\binom{-4}{0}
$$

(a) On the grid, plot the point C.
(b) Write $\overrightarrow{A C}$ as a column vector.
(c) $\overrightarrow{D E}$ is a vector that is perpendicular to $\overrightarrow{B C}$.

The magnitude of $D E \stackrel{\rightharpoonup}{\text { is equal to the magnitude of } \overrightarrow{B C}}$.
Write down a possible column vector for $\overrightarrow{D E}$.

EXAM PAPERS PRACTICE

Work out

$$
2\binom{3}{5}-\binom{1}{2}
$$

In the diagram, O is the origin, $\overrightarrow{O A}=\mathbf{a}, O \overrightarrow{C=} \mathbf{c}$ and $A \overrightarrow{B=} \mathbf{b}$. P is on the line $A B$ so that $A P: P B=2: 1$.
Q is the midpoint of $B C$.
Find, in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}, in its simplest form
(a) $\overrightarrow{C B}$,
(b) the position vector of Q,
(c) $\overrightarrow{P Q}$.

EXAM PAPERS PRACTICE

$$
\overrightarrow{A B}=\binom{-3}{5}
$$

Find $|\overrightarrow{A B}|$.

In the diagram, O is the origin, $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. C is on the line $A B$ so that $A C: C B=1: 2$.

Find, in terms of \mathbf{a} and \mathbf{b}, in its simplest form,
(a) $\overrightarrow{A C}$,
(b) the position vector of C.

O is the origin and $O P Q R S T$ is a regular hexagon.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O T}=\mathbf{t}$.
Find, in terms of \mathbf{p} and t , in their simplest forms,
(a) $\overrightarrow{P T}$,
(b) $\overrightarrow{P R}$,
(c) the position vector of R.

O is the origin and $O P R Q$ is a parallelogram.
The position vectors of P and Q are p and q .
X is on $P R$ so that $P X=2 X R$.
Find, in terms of p and q, in their simplest forms
(a), $\overrightarrow{Q X}$
(b) the position vector of M, the midpoint of $Q X$.

The points $A(1,2)$ and $B(5,5)$ are shown on the diagram .
(a) Work out the co-ordinates of the midpoint of $A B$.
(b) Write down the column vector $\overrightarrow{A B}$.

In the diagram, $P Q S, P M R, M X S$ and $Q X R$ are straight lines.
$P Q=2 Q S$.
M is the midpoint of $P R$.
$Q X: X R=1: 3$.
$\overrightarrow{P Q}=\mathrm{q}$ and $\overrightarrow{P R}=\mathrm{r}$.
(a) Find, in terms of q and r,
(i) $\overrightarrow{R Q}$,
(ii) $\overrightarrow{M S}$.
(b) By finding $\overrightarrow{M X}$, show that X is the midpoint of $M S$.

The position vector \mathbf{r} is given by $\mathbf{r}=2 \mathbf{p}+t(\mathbf{p}+\mathbf{q})$.
(a) Complete the table below for the given values of t.

Write each vector in its simplest form.
One result has been done for you.

t	0	1	2	3
\mathbf{r}			$4 \mathbf{p}+\mathbf{2 q}$	

(b) O is the origin and \mathbf{p} and \mathbf{q} are shown on the diagram.
(i) Plot the 4 points given by the position vectors in the table.

(ii) What can you say about these four points?

In triangle $O G H$, the ratio $G N: N H=3: 1$.
$\overrightarrow{O G}=\mathbf{g}$ and $\overrightarrow{O H}=\mathbf{h}$.
Find the following in terms of g and \mathbf{h}, giving your answers in their simplest form.
(a) $\overrightarrow{H G}$
(b) $\overrightarrow{O N}$

O is the origin and $O P Q R$ is a parallelogram whose diagonals intersect at M.
The vector $\overrightarrow{O P}$ is represented by p and the vector $\overrightarrow{O R}$ is represented by r .
(a) Write down a single vector which is represented by
(i) $\mathbf{p}+\mathbf{r}$
(ii) $\frac{1}{2} \mathbf{p}-\frac{1}{2} \mathbf{r}$.
(b) On the diagram, mark with a cross (x) and label with the letter S the point with position vector

$$
\frac{1}{2} \mathbf{p}+\frac{3}{4} \mathbf{r}
$$

