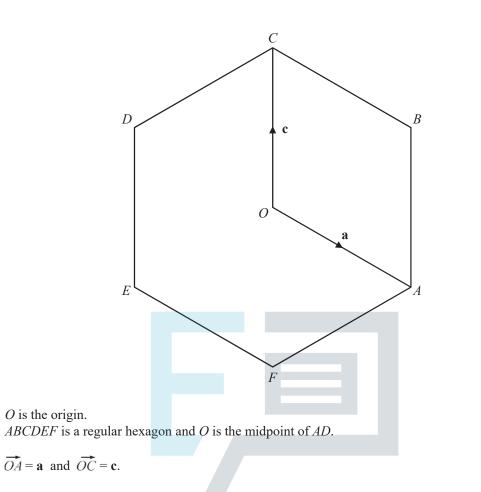


Vectors

Model Answer

For more help, please visit our website www.exampaperspractice.co.uk



Find, in terms of **a** and **c**, in their simplest form

(b) \overrightarrow{DB} ,

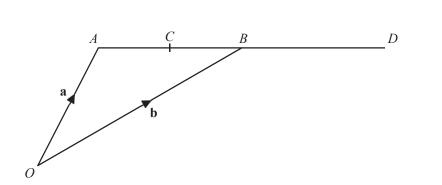
[2]

[2]

In terms of **a** and **c**, the vector \overrightarrow{DB} is $\mathbf{a} - \mathbf{c}$.

(c) the position vector of *E*.

The position vector of point E in terms of \mathbf{a} and \mathbf{c} is $\mathbf{a} - 2\mathbf{c}$.



A and B have position vectors \mathbf{a} and \mathbf{b} relative to the origin O. C is the midpoint of AB and B is the midpoint of AD.

Find, in terms of **a** and **b**, in their simplest form

(a) the position vector of *C*,

[2]

The position vector of point C, the midpoint of A and B, is given by $\frac{1}{2}(\mathbf{a} + \mathbf{b})$.

(b) the vector \vec{CD} .

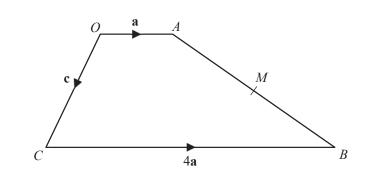
[2]

The vector \overrightarrow{CD} can be expressed in terms of **a** and **b** as follows:

Exam Papers Practice

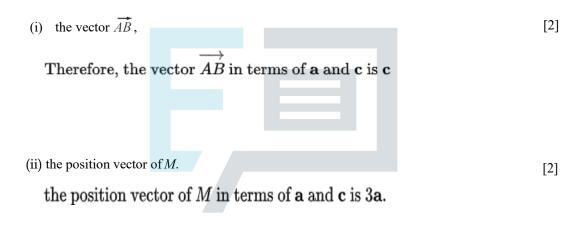
 $\overrightarrow{CD} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - \mathbf{b} = \frac{1}{2}\mathbf{a} - \frac{1}{2}\mathbf{b}.$

Question 3



O is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{CB} = 4\mathbf{a}$. *M* is the midpoint of *AB*.

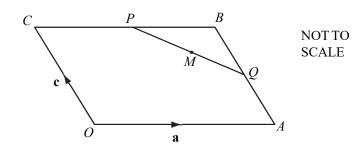
(a) Find, in terms of **a** and **c**, in their simplest form



Exam Papers Practice

(b) Mark the point D on the diagram where $\overrightarrow{OD} = 3\mathbf{a} + \mathbf{c}$.

[2]



O is the origin and *OABC* is a parallelogram. CP = PB and AQ = QB.

 \overrightarrow{OA} = a and \overrightarrow{OC} = c. Find in terms of a and c, in their simplest form,

(a) \overrightarrow{PQ} ,

in terms of a and $\mathbf{c}, \overrightarrow{PQ} = \mathbf{a} + 3\mathbf{c}.$

(b) the position vector of M, where M is the midpoint of PQ.

[2]

[2]

The position vector of M in terms of **a** and **c** is: $\mathbf{m} = \frac{\mathbf{p} + \mathbf{q} - \frac{\mathbf{a}}{2} - \frac{\mathbf{c}}{2}}{2}$

Exam Papers Practice

 $\overrightarrow{AB} = \mathbf{a} + t\mathbf{b}$ and $\overrightarrow{CD} = \mathbf{a} + (3t-5)\mathbf{b}$ where t is a number.

Find the value of t when $\overrightarrow{AB} = \overrightarrow{CD}$.

[2]

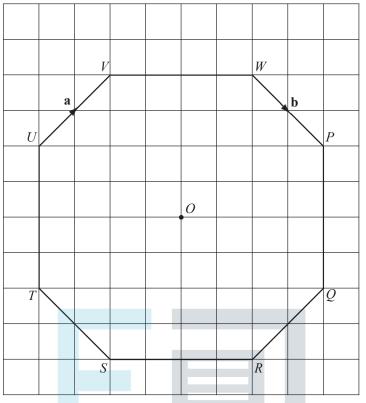
Setting $\overrightarrow{AB} = \overrightarrow{CD}$ and equating the corresponding components, we get: $\mathbf{a} + t\mathbf{b} = \mathbf{a} + (3t - 5)\mathbf{b}$

 $t\mathbf{b} = (3t-5)\mathbf{b}$

Since **b** is a vector and cannot be zero, we can cancel it from both sides of the equation, leaving: t = 3t - 5

Solving for t:

 $2t = 5 \Longrightarrow t = rac{5}{2}$ So, the value of t is $rac{5}{2}$.



The origin *O* is the centre of the octagon *PQRSTUVW*. $UV = \mathbf{a}$ and $WP = \mathbf{b}$.

(a) Write down in terms of **a** and **b**

(i) $V\overline{W}$,

[1]

In terms of a and b: $\overrightarrow{VW} = -a$ pers Practice [1] (ii) $T\overline{U}$,

$$\overrightarrow{TU} = -\frac{1}{2}(\mathbf{a} + \mathbf{a})$$

= - \mathbf{a}

(iii) \overrightarrow{TP} ,

$$\overrightarrow{TP} = \overrightarrow{UQ} = \overrightarrow{WV} = rac{1}{2}(\overrightarrow{UV} + \overrightarrow{WP}) = rac{1}{2}(\mathbf{a} + \mathbf{b})$$

[2]

(iv) the position vector of the point *P*.

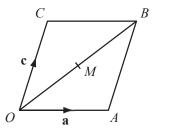
[1]

[1]

the position vector of point P in terms of **a** and **b** is $\frac{1}{2}(\mathbf{a} + \mathbf{b})$.

(b) In the diagram, 1 centimetre represents 1 unit. Write down the value of $|\mathbf{a} - \mathbf{b}|$.

Given that 1 centimeter represents 1 unit, if $|\mathbf{a}| = 1$, then $|\mathbf{a} - \mathbf{b}| \le 2$.



OABC is a parallelogram. $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$. *M* is the mid-point of *OB*. Find \overrightarrow{MA} in terms of a and c.

[2]

In a parallelogram OABC, with $OA = \mathbf{a}$ and $OC = \mathbf{c}$, the midpoint M of OB is given by $\overrightarrow{MA} = \frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{c}$.

(a) D is the point (2, -5) and
$$\overrightarrow{DE} = \begin{pmatrix} 7\\ 1 \end{pmatrix}$$
.

Find the co-ordinates of the point E.

It seems there might be some confusion in the question, as the information about points D and E is not directly related to the previous parallelogram.

(b) $\mathbf{v} = \begin{pmatrix} t \\ 12 \end{pmatrix}$ and $|\mathbf{v}| = 13$. Work out the value of t, where t is negative. The magnitude (or norm) of a vector t 12 is given by: $|\mathbf{v}| = \sqrt{t^2 + 12^2}$ You're given that $|\mathbf{v}| = 13$, so you can set up the equation: $13 = \sqrt{t^2 + 12^2}$ Now, solve for t : $13^2 = t^2 + 12^2$ $169 = t^2 + 144$ $t^2 = 25$ $t = \pm 5$ Given that t is negative, the solution is t = -5.

[2]

[1]

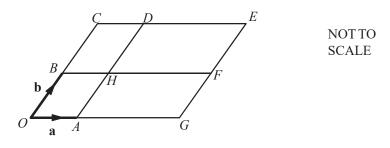
Page 9

[1]

[1]

[2]

The diagram shows a parallelogram OCEG.



O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *BHF* and *AHD* are straight lines parallel to the sides of the parallelogram. $\overrightarrow{OG} = 3\overrightarrow{OA}$ and $\overrightarrow{OC} = 2\overrightarrow{OB}$.

(a) Write the vector \overrightarrow{HE} in terms of a and b.

In terms of **a** and **b**,
$$\overrightarrow{HE} = 3\mathbf{b} - 4\mathbf{a}$$
.

- (b) Complete this statement.
 - $\mathbf{a} + 2\mathbf{b}$ is the position vector of point

(c) Write down two vectors that can be written as 3a - b.

Given that $\overrightarrow{OG} = 3\overrightarrow{OA}$ and $\overrightarrow{OC} = 2\overrightarrow{OB}$, we can express \overrightarrow{OG} and \overrightarrow{OC} in terms of and \mathbf{b} : $\overrightarrow{OG} = 3\mathbf{a}$ $\overrightarrow{OC} = 2\mathbf{b}$ Now, to find vectors in the form $3\mathbf{a} - \mathbf{b}$, we can subtract \mathbf{b} from $3\mathbf{a}$: $3\mathbf{a} - \mathbf{b} = 3\mathbf{a} - 1\mathbf{b}$ Therefore, two vectors that can be written as $3\mathbf{a} - \mathbf{b}$ are $3\mathbf{a} - \mathbf{b}$ itself and $2\mathbf{a} - \mathbf{b}$.

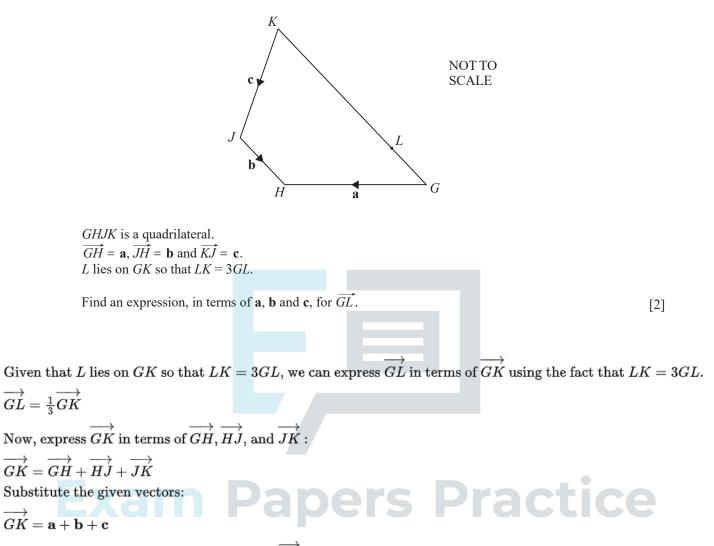
(a)
$$\overrightarrow{GH} = \begin{pmatrix} 6\\ -4 \end{pmatrix}$$

Find
(i) \overrightarrow{SGH} , [1]
To find \overrightarrow{SGH} , you simply multiply each component of 6
 -4 by 5:
 $\overrightarrow{SGH} = 5 \times \begin{pmatrix} 6\\ -4 \end{pmatrix} = \begin{pmatrix} 30\\ -20 \end{pmatrix}$
(ii) \overrightarrow{HG} . [1]
 $\overrightarrow{HG} = \begin{pmatrix} -6\\ 4 \end{pmatrix}$
(b) $\begin{pmatrix} 6\\ 7 \end{pmatrix} + \begin{pmatrix} 2\\ y \end{pmatrix} = \begin{pmatrix} 8\\ 3 \end{pmatrix}$
Find the value of *y*:
 $\begin{pmatrix} 6\\ 7 \end{pmatrix} + \begin{pmatrix} 2\\ y \end{pmatrix} = \begin{pmatrix} 8\\ 3 \end{pmatrix}$
Now, add the corresponding components:
 $6 + 2 = 8$
 $7 + y = 3$
Solving the second equation for *y*:
 $y = 3 - 7 = -4$
So, the value of *y* is -4.

Page 10

$$\overrightarrow{BC} = \begin{pmatrix} 2\\ 3 \end{pmatrix} \qquad \overrightarrow{BA} = \begin{pmatrix} -5\\ 6 \end{pmatrix}$$
(a) Find \overrightarrow{CA} .
$$\overrightarrow{CA} = \begin{pmatrix} 7\\ -3 \end{pmatrix}.$$
[2]

(b) Work out
$$|\overrightarrow{BA}|$$
. [2]
The magnitude (or norm) of a vector \overrightarrow{BA} is given by the formula:
 $|\overrightarrow{BA}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
In this case, -5
6. The initial point *B* corresponds to (0,0), so $x_1 = 0$ and $y_1 = 0$. The final point *A* corresponds to (-5,6), so $x_2 = -5$ and $y_2 = 6$.
Now, plug these values into the formula:
 $|\overrightarrow{BA}| = \sqrt{(-5 - 0)^2 + (6 - 0)^2}$
 $|\overrightarrow{BA}| = \sqrt{25 + 36}$
 $|\overrightarrow{BA}| = \sqrt{61}$
So, the magnitude of \overrightarrow{BA} is $\sqrt{61}$.



Now, substitute this into the expression for $G\dot{L}$:

$$\overrightarrow{GL} = \frac{1}{3}(\mathbf{a} + \mathbf{b} + \mathbf{c})$$

So, in terms of \mathbf{a}, \mathbf{b} , and \mathbf{c} , the expression for GL is:

$$\overrightarrow{GL} = \frac{1}{3}(\mathbf{a} + \mathbf{b} + \mathbf{c})$$

[1]

[1]



A is the point (-1, 1) and B is the point (8, 7).

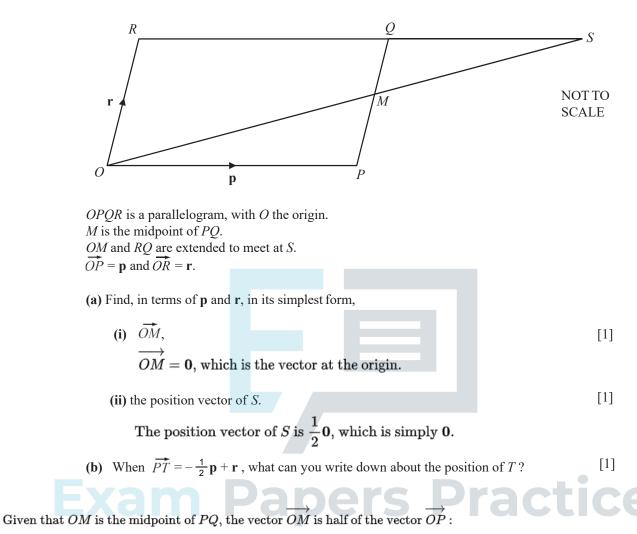
(a) Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \begin{pmatrix} 8 - (-1) \\ 7 - 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$$
(b) Find $|\overrightarrow{AB}|$.
$$|\overrightarrow{AB}| = \sqrt{117}$$
[2]

(c) $\overrightarrow{AC} = 2\overrightarrow{AB}$.

Write down the co-ordinates of C.

EXA
$$C = A + \overrightarrow{AC} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 18 \\ 12 \end{pmatrix} = \begin{pmatrix} 17 \\ 13 \end{pmatrix}$$
 Practice



$$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OP} = \frac{1}{2}\mathbf{p}$$

Now, you're given that $\overrightarrow{PT} = -\frac{1}{2}\mathbf{p} + \mathbf{r}$. Notice that $-\frac{1}{2}\mathbf{p} + \mathbf{r}$ is the vector that connects the midpoint M to point $T(\overrightarrow{TM})$. So, you can express the position vector of T as:

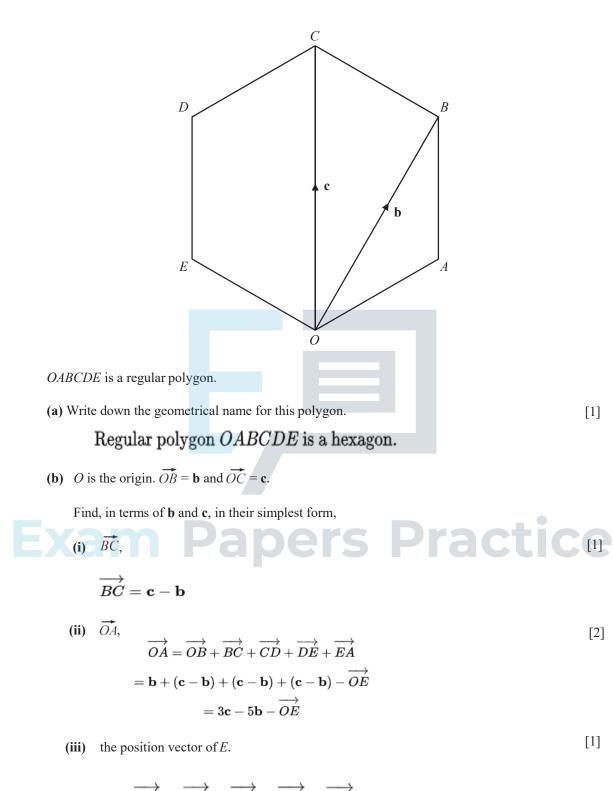
 $\overrightarrow{OT} = \overrightarrow{OM} + \overrightarrow{TM}$ Substitute the values:

 $\overrightarrow{OT} = \frac{1}{2}\mathbf{p} + \left(-\frac{1}{2}\mathbf{p} + \mathbf{r}\right)$

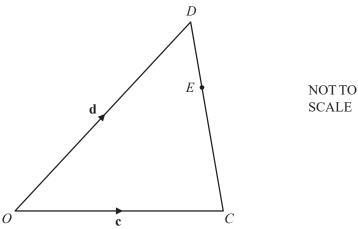
Combine like terms:

 $\overrightarrow{OT} = \frac{1}{2}\mathbf{p} - \frac{1}{2}\mathbf{p} + \mathbf{r}$ $\overrightarrow{OT} = \mathbf{r}$

So, the position vector of point T is ${\bf r}.$



$$\overrightarrow{OE} = \overrightarrow{OB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$$
$$= \mathbf{b} + \mathbf{c} + \mathbf{c}$$
$$= \mathbf{b} + 3\mathbf{c}$$



In the diagram, O is the origin. $\overrightarrow{OC} = c$ and $\overrightarrow{OD} = d$. E is on CD so that CE = 2ED.

Find, in terms of c and d, in their simplest forms,

(a)
$$\overrightarrow{DE}$$
,
 $\overrightarrow{DE} = \frac{1}{3}(c - d) = \frac{1}{3}c - \frac{1}{3}d$

(b) the position vector of E.

[2]

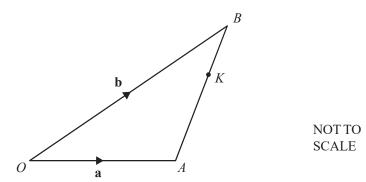
Let's denote the position vector of E as OE. Since E is on CD and CE = 2ED, we can express OE in terms of OC and OD. $\overrightarrow{OE} = \overrightarrow{OC} + \overrightarrow{CE}$ $\overrightarrow{OE} = \overrightarrow{OC} + \overrightarrow{CE}$

$$=\overrightarrow{OC}+2\overrightarrow{ED}$$

Now, substitute the given vectors:

 $\overrightarrow{OE} = \mathrm{c} + 2 \mathrm{d}$

So, in terms of c and d, the position vector of E is c + 2 d.



 \overrightarrow{O} is the origin and K is the point on AB so that AK : KB = 2 : 1. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Find the position vector of *K*. Give your answer in terms of **a** and **b** in its simplest form.

[3]

Since AK: KB = 2:1, we can express the position vector of $K(\overline{OK})$ in terms of \overline{OA} and OB:

Exam Papers Practice

 $\overrightarrow{OK} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$ Now, substitute the give

Now, substitute the given vectors:

$$\overrightarrow{OK} = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$

So, in terms of **a** and **b**, the position vector of K is $\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$.

Question 18

p Z Q NOT TO SCALE

O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. *Z* is a point on *PQ* such that *PZ* : *ZQ* = 5 : 2.

Work out, in terms of \mathbf{p} and \mathbf{q} , the position vector of Z. Give your answer in its simplest form.

[3]

Given that PZ: ZQ = 5:2, the position vector of $Z(\overline{OZ})$ can be expressed as: $\overrightarrow{OZ} = 2 \overrightarrow{OZ} = 5 \overrightarrow{OZ}$

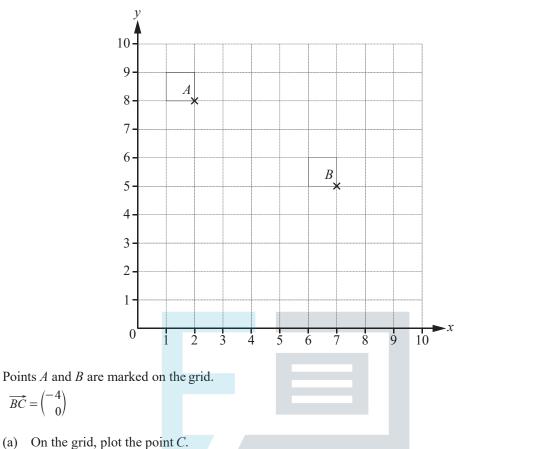
$$OZ = \frac{2}{7}OP + \frac{5}{7}OQ$$

Now, substitute the given vectors:

$$\overrightarrow{OZ} = \frac{2}{7}\mathbf{p} + \frac{5}{7}\mathbf{q}$$

So, in terms of **p** and **q**, the position vector of Z is $\frac{2}{7}$ **p** + $\frac{5}{7}$ **q**.

Exam Papers Practice



The point C is plotted on the x-axis, 7 units to the right of the origin.

(b) Write \overline{AC} as a column vector. Ders Practice[1] (3,3)

(c) DE is a vector that is perpendicular to BC. The magnitude of DE is equal to the magnitude of \overrightarrow{BC} .

Write down a possible column vector for \overrightarrow{DE} .

Possible column vector for
$$\overrightarrow{DE}$$
 as $\begin{pmatrix} 1\\ 0 \end{pmatrix}$.

[1]

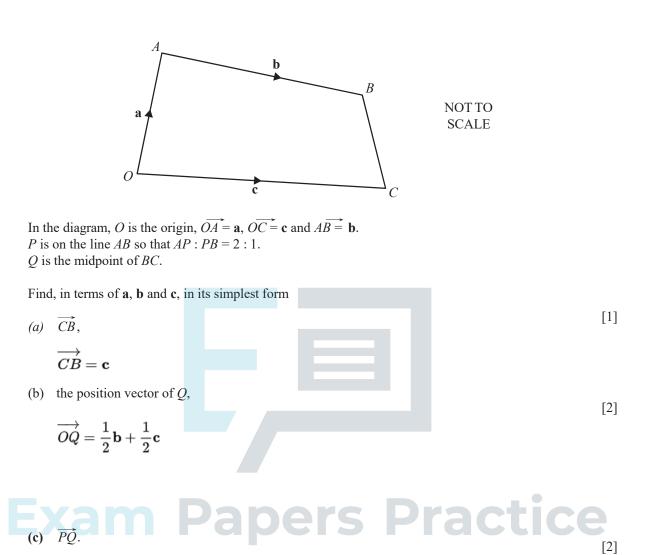
[2]

Work out

$$2\binom{3}{5} - \binom{1}{2}$$
^[1]

$$2 inom{3}{5} - inom{1}{2} = inom{2 \cdot 3 - 1}{2 \cdot 5 - 2} = inom{5}{8}$$

So, $2 inom{3}{5} - inom{1}{2} = inom{5}{8}$.



$$\overrightarrow{PQ}=rac{3}{2}((\mathbf{a}+\mathbf{b})-\mathbf{a})=rac{3}{2}\mathbf{b}$$

$$\overrightarrow{AB} = \begin{pmatrix} -3\\5 \end{pmatrix}$$

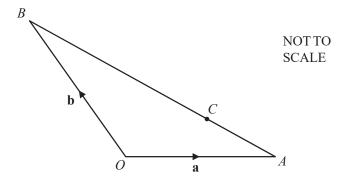
Find $|\overrightarrow{AB}|$.

[2]

$$ec{AB} = \sqrt{(-3)^2 + 5^2}$$

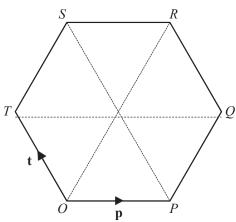
 $ec{AB} = \sqrt{9 + 25}$
 $ec{AB} = \sqrt{34}$

So, the magnitude of \overrightarrow{AB} is $\sqrt{34}$.



In the diagram, *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *C* is on the line *AB* so that *AC*: *CB* = 1:2.

Find, in terms of **a** and **b**, in its simplest form,



O is the origin and *OPQRST* is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OT} = \mathbf{t}$.

Find, in terms of **p** and **t**, in their simplest forms,

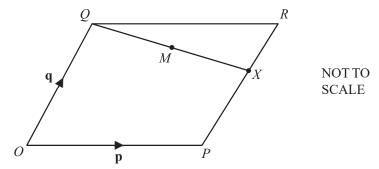
(b) \overrightarrow{PR} , $\overrightarrow{PR} = \frac{1}{6}\mathbf{p} - \mathbf{p} = -\frac{5}{6}\mathbf{p}$ apers Practic^[2]

(c) the position vector of R.

[2]

[1]

$$\overrightarrow{OR} = egin{pmatrix} rac{1}{2} \left(p_x - \sqrt{3} p_y
ight) \ rac{\sqrt{3}}{2} p_x + rac{1}{2} p_y \end{pmatrix}$$



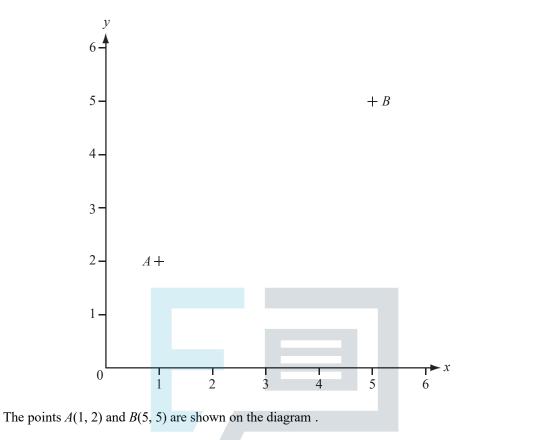
O is the origin and *OPRQ* is a parallelogram. The position vectors of \tilde{P} and \tilde{Q} are p and q. X is on PR so that PX = 2XR.

Find, in terms of p and q, in their simplest forms

(a)
$$, \overrightarrow{QX}$$

 $\overrightarrow{QX} = \mathbf{q} - \frac{2}{3}(\mathbf{q} - \mathbf{p}) = \frac{1}{3}(\mathbf{q} + \mathbf{p})$
(b) the position vector of *M*, the midpoint of *QX*.
[2]

$$\overrightarrow{OM} = \frac{1}{2}(\mathbf{q} + \mathbf{p})$$



(a) Work out the co-ordinates of the midpoint of AB.

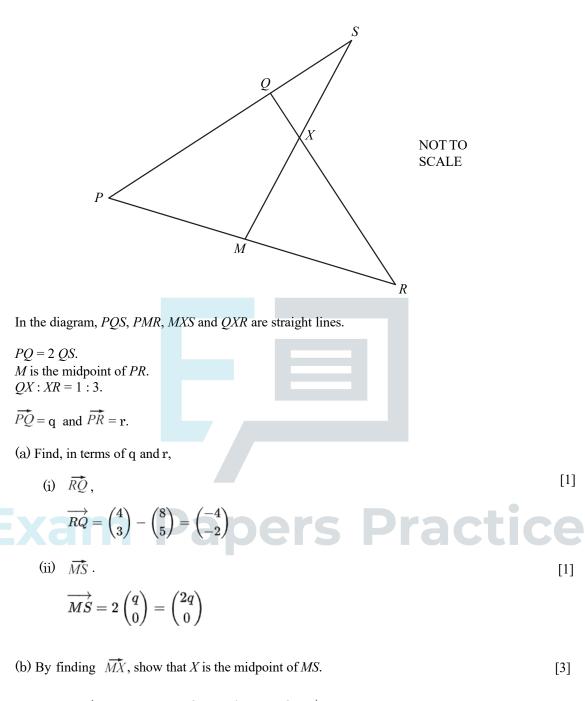
The midpoint of AB is (3, 3.5). Exam Papers Practice

(b) Write down the column vector \overrightarrow{AB} .

[1]

The column vector \overrightarrow{AB} is: [4,3]

[1]



$$\overrightarrow{MX} = \vec{X} - \vec{M} = rac{1}{2}\vec{S} - rac{1}{2}\vec{M} = rac{1}{2}\overrightarrow{MS}$$

The position vector **r** is given by $\mathbf{r} = 2\mathbf{p} + t(\mathbf{p} + \mathbf{q})$.

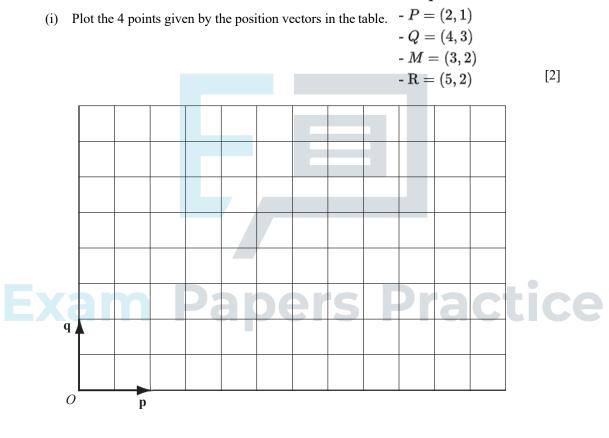
(a) Complete the table below for the given values of *t*.Write each vector in its simplest form.One result has been done for you.

[3]

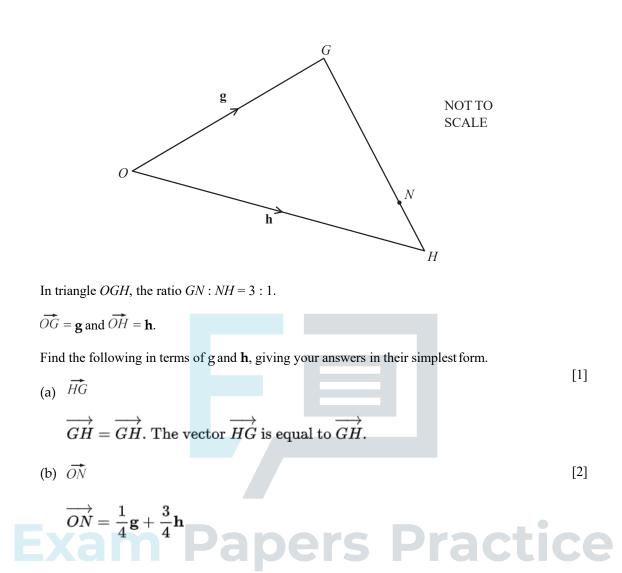
t	0	1	2	3
r	2р	3p + q	$4\mathbf{p} + 2\mathbf{q}$	5p + 3q

(b) O is the origin and **p** and **q** are shown on the diagram.

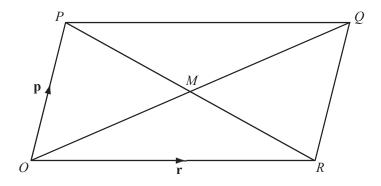
The points are labeled as follows:



(ii) What can you say about these four points? [1]The four points are collinear, evenly spaced, and divide the line segment joining p and q into four equal parts.



[1]



O is the origin and OPQR is a parallelogram whose diagonals intersect at M.

The vector \overrightarrow{OP} is represented by p and the vector \overrightarrow{OR} is represented by r.

(a) Write down a single vector which is represented by

(i) $\mathbf{p} + \mathbf{r}$, $\overrightarrow{OP} + \overrightarrow{OR} = \mathbf{p} + \mathbf{r}$ So, the single vector represented by $\mathbf{p} + \mathbf{r}$ is $\mathbf{p} + \mathbf{r}$.

(ii) $\frac{1}{2}\mathbf{p} - \frac{1}{2}\mathbf{r}$. [1] $\frac{1}{2}\mathbf{p} - \frac{1}{2}\mathbf{r} = \frac{1}{2}(\mathbf{p} - \mathbf{r})$ Practice

(b) On the diagram, mark with a cross (x) and label with the letter S the point with position vector

$$\frac{1}{2}\mathbf{p} + \frac{3}{4}\mathbf{r}.$$

To mark the point S with the given position vector $\frac{1}{2}\mathbf{p} + \frac{3}{4}\mathbf{r}$, we can find its coordinates in terms of the vectors \mathbf{p} and \mathbf{r} . The coordinates of S are given by $(\frac{1}{2}\mathbf{p} + \frac{3}{4}\mathbf{r})$.

To find the coordinates, we can use the components of vectors ${\bf p}$ and ${\bf r}$. If p_x

 $p_y ext{ and } \mathbf{r} = r_x$

 r_y , then the coordinates of S are:

$$\left(\frac{1}{2}p_x + \frac{3}{4}r_x, \frac{1}{2}p_y + \frac{3}{4}r_y\right)$$

Now, mark the point S on the diagram at these coordinates with a cross (x) and label it as S.