

# IB Maths: AA HL Vector Planes

# **Topic Questions**

These practice questions can be used by students and teachers and is Suitable for IB

Maths AA HL Topic Questions

| Course     | IB Maths                   |
|------------|----------------------------|
| Section    | 3. Geometry & Trigonometry |
| Торіс      | 3.11 Vector Planes         |
| Difficulty | Medium                     |

**Level: IB Maths** 

Subject: IB Maths AA HL

**Board: IB Maths** 

**Topic: Vector Planes** 



### **Question 1**

A plane  $\Pi$  contains the point A(3, 9, -1) and has a normal vector  $\begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$ .

a)

Find the equation of the plane in its Cartesian form.

[2 marks]

A second point B has coordinates (-4, 1, -3).

b)

Determine whether point B lies on the same plane.

[2 marks]

#### **Question 2**

A plane  $\Pi$  has equation  $\mathbf{r} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix}$ .

A line with equation  $\mathbf{r} = \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$  intersects  $\Pi$  at a point Q.

a)

Write down the equations of the line and the plane in their parametric forms.

[3 marks]

b)

Given that the coordinates of Q are (10, -2, 4), find the values for  $\beta$ ,  $\lambda$  and  $\mu$  at the point of intersection.

[5 marks]



# **Question 3**

| Consider the two planes $\Pi$ | and $\Pi_2$ | which can be | defined by | the equations |
|-------------------------------|-------------|--------------|------------|---------------|
|-------------------------------|-------------|--------------|------------|---------------|

$$\Pi_1$$
:  $x + 2y - z = 5$ 

$$\Pi_2$$
:  $-3x - y + 8z = 1$ 

a

Write down expressions for the normal vectors of each of the two planes.

[2 marks]

b)

Hence find the angle between the two planes. Give your answer in radians.

[5 marks]

#### **Question 4**

The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

The position vectors are given by

$$a=2i+3j-k$$

$$b = -i + 2j + 2k$$

$$c = i - 4j + 3k$$

a)

Find the direction vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ .

[2 marks]

Points A, B and C all lie on a single plane.

b)

Use the results from part (a) to write down the vector equation of the plane.

[2 marks]



c)

Find the Cartesian equation of the plane.

[4 marks]

# **Question 5**

A plane lies parallel to the line with equation  $\mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 9 \\ 1 \end{pmatrix}$  and contains the points P and X with coordinates (5, 4, 5) and (-2, 2, 0) respectively.

a)

Find the vector  $\overrightarrow{PX}$ .

[2 marks]

By appropriate use of the vector product, find the normal to the plane.

[2 marks]

c)

Hence find the Cartesian equation of the plane.

[2 marks]

#### **Question 6**

Consider the plane defined by the Cartesian equation 5x - 3y - z = 13.

a)

Show that the line with equation  $\mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -7 \end{pmatrix}$  lies in the plane.

[3 marks]



b)

Show that the line with Cartesian equation  $x-2=\frac{y-6}{2}=2-z$  is parallel to the plane but does not lie in the plane.

[3 marks]

# **Question 7**

Consider the planes  $\Pi_{1},\Pi_{2}$  and  $\Pi_{3}$ , which are defined by the equations

$$\Pi_1$$
:  $3x - 5y + z = 27$ 

$$\Pi_2$$
:  $-4x + y + 2z = -10$ 

$$\Pi_3$$
:  $-2x-y-z=-1$ 

a)

By solving the system of equations represented by the three planes show that the system of equations has a unique solution.

[3 marks]

b)

Hence write down the coordinates of any point(s) where all three planes intersect.

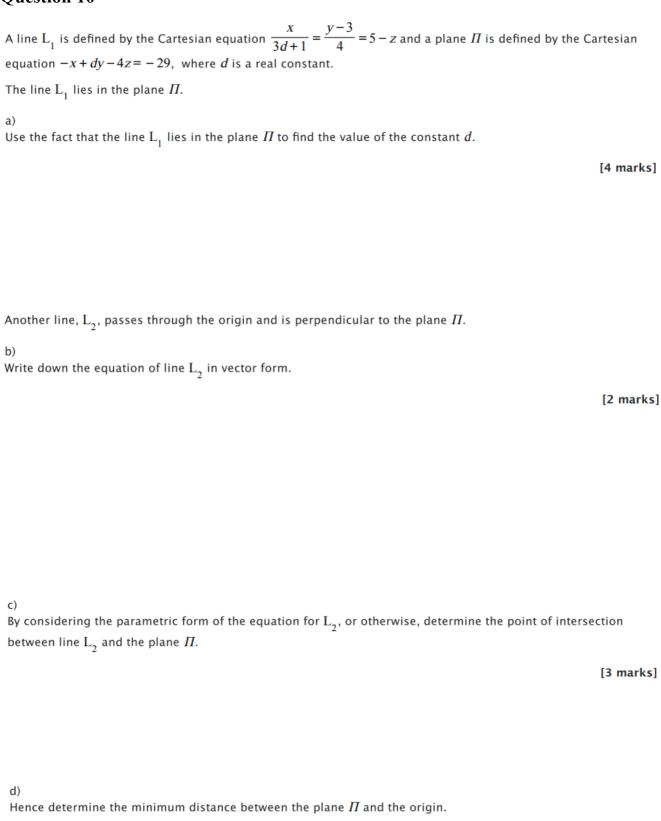
[1 mark]

#### **Question 8**

Consider the line L with vector equation  $\mathbf{r} = (1 - \lambda)\mathbf{i} + (\lambda - 2)\mathbf{j} + (3 + 2\lambda)\mathbf{k}$  and the plane  $\Pi$  with Cartesian equation 3x - 2y + z = 11.

a)

Find the angle in radians between the line L and the normal to the plane  $\Pi$ .


[4 marks]



| b) Hence find the angle in radians between the line $\boldsymbol{L}$ and the plane $\boldsymbol{\varPi}.$ | [2 marks] |
|-----------------------------------------------------------------------------------------------------------|-----------|
| Question 9                                                                                                |           |
| Two planes $\Pi_1$ and $\Pi_2$ are defined by the equations                                               |           |
| $\Pi_1: 3x - 2y + 4z = 18$                                                                                |           |
| $\Pi_2$ : $-2x + y + 2z = 7$                                                                              |           |
| a) Write down expressions for the normal vectors of each of the two planes.                               | [2 marks] |
| b) Find the cross product of the two normal vectors.                                                      | [2 marks] |
| c) Find the coordinates of a point that lies on both planes.                                              | [3 marks] |
| d)<br>Hence find a vector equation of the line of intersection of the two planes.                         | [2 marks] |



### **Question 10**



[2 marks]