EXAM PAPERS PRACTICE

Trophic Levels in an Ecosystem

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641

Subject: Biology

Exam board: GCSE AQA

Topic: Trophic Levels in an Ecosystem

Q1.

The diagram below shows a food chain in a river.
*
Algae \longrightarrow Invertebrate \longrightarrow Small fish \longrightarrow Large fish animals
(a) Draw one line from each scientific term to the correct organism in the food chain.

(b) The table below shows the biomass of the organisms at each stage in the food chain.

Organism	Biomass in arbitrary units
Algae	840
Invertebrate animals	200
Small fish	40
Large fish	10

Calculate the percentage of the biomass of the invertebrate animals that is transferred to the large fish.

Use the equation:

$$
\text { percentage }=\frac{\text { biomass of large fish }}{\text { biomass of invertebrate animals }} \times 100
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage $=$ \qquad
(c) A large amount of biomass is lost from the food chain.

Complete the sentences.
Choose answers from the box.

coordination	digestion	excretion
filtration	ingestion	respiration

When the small fish eat the invertebrate animals, not all of this material is broken down during \qquad —.

Materials absorbed from the gut may enter the body cells of the small fish.
These materials are broken down into carbon dioxide and water by \qquad .

The carbon dioxide and other waste materials from the body cells are removed from the small fish by \qquad .
(d) A disease kills many of the small fish.

Why does the number of invertebrate animals increase?

For more help, please our website www.exampaperspractice.co.uk
\qquad

Q2.
Figure 1 shows:

- a food chain for organisms in a river
- the biomass of the organisms at each trophic level.

Figure 1

$\begin{array}{llll}\text { Biomass in } \mathrm{g} / \mathrm{m}^{2}: & 840 & 200 & 40\end{array}$
(a) Draw a pyramid of biomass for the food chain in Figure 1 on Figure 2.

You should:

- use a suitable scale
- label the x-axis
- label each trophic level.

Figure 2

(b) Calculate the percentage of the biomass lost between the algae and the large fish.

Give your answer to 2 significant figures.
\qquad
Percentage loss =
\qquad
(c) Give one way that biomass is lost between trophic levels.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
(d) A large amount of untreated sewage entered the river. Many fish died.

Untreated sewage contains organic matter and bacteria.
Explain why many fish died.
\qquad
-
\qquad
-
\qquad

Q3.
Pollution of rivers with untreated sewage can kill plants and animals.
Figure 1 shows a sprinkler bed at a sewage works.
The sewage trickles slowly downwards over the surfaces of the stones.
Figure 1

Some of the microorganisms on the stones feed on organic matter in the sewage.
The treated sewage is safe enough to pass into a river.
(a) Most of the microorganisms in the sprinkler bed respire aerobically.

Describe two features of the sprinkler bed that encourage aerobic respiration.
Use information from Figure 1.
1.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
2.
\qquad
\qquad
\qquad
\qquad

Figure 2 shows the feeding relationships between the microorganisms in the sprinkler bed.

Figure 2

(b) Which organisms in Figure $\mathbf{2}$ are producers?

Tick one box.

Bacteria \square

Green algae \square

Large protists \square

Small protists \square

For more help, please our website www.exampaperspractice.co.uk
(c) Name one organism in Figure 2 which is both a primary and a secondary consumer.
\qquad
\qquad
(d) The bacteria are decomposers.

Figure 2 shows that the bacteria change organic matter into carbon dioxide and inorganic mineral ions.

Describe how the bacteria do this.
\qquad
——
\qquad
-
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.
Cows are reared for meat production.
The cows can be reared indoors in heated barns, or outdoors in grassy fields.
The table shows energy inputs and energy outputs for both methods of rearing cows.

EXAM PAPERS PRACTICE

	$\mathbf{k J} / \mathbf{m}^{2} /$ year		
	Energy input		Energy output
	Food	Fossil fuels	Meat production
Indoors	10000	6000	40
Outdoors	5950	50	\mathbf{X}

(a) The percentage efficiency for rearing cows outdoors is 0.03%

Calculate the energy output value \mathbf{X}.
Use the equation:

$$
\text { percentage efficiency }=\frac{\text { energy output }}{\text { total energy input }} \times 100
$$

\qquad
Energy output value $\mathbf{X}=$ \qquad $\mathrm{kJ} / \mathrm{m}^{2}$ / year
(b) The percentage efficiency for rearing cows outdoors is 0.03%

Calculate how many times more efficient it is to rear cows indoors than to rear cows outdoors.

Use the equation from (a).
\qquad
-
\qquad
-
\qquad
——
\qquad
-
\qquad

Answer = \qquad times
(c) A large amount of energy is wasted in both methods of rearing cows.

Give two ways in which the energy is wasted.
1.
\qquad
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(d) Suggest two reasons why it is more efficient to rear cows indoors than to rear cows outdoors.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
(2)
(Total 10 marks)

Q5.
The diagram below shows a food chain in a garden.

Lettuce © destillat/iStock/Thinkstock; Snail ©Valengilda/iStock/Thinkstock; Shrew © GlobalT/iStock/Thinkstock
(a) Name one consumer shown in the diagram above.
\qquad
\qquad
(b) Name one carnivore shown in the diagram above.
\qquad
(c) A disease kills most of the shrews in the garden.

Suggest why the number of snails in the garden may then increase.
\qquad
\qquad
\qquad
\qquad
(d) What is the name given to all the snails in the garden shown in the diagram above?

Tick one box.

Community \square

For more help, please our website www.exampaperspractice.co.uk

(e) Which pyramid of biomass is correct for the food chain shown in the diagram above?

Tick one box.

A

B

C \square
(f) Some snails ate some lettuces.

The lettuces contained 11000 kJ of energy.
Only 10% of this energy was transferred to the snails.
Calculate the energy transferred to the snails from the lettuces.
\qquad
Energy =
\qquad kJ
(g) Give one reason why only 10% of the energy in the lettuces is transferred to the snails.

Tick one box.

The lettuces carry out photosynthesis \square

The snails do not eat the roots of the lettuces \square

Not all parts of a snail can be eaten \square
(h) Abiotic factors can affect the food chain.

Wind direction is one abiotic factor.
Name one other abiotic factor.
\qquad
(Total 8 marks)

Q6.
Figure 1 shows how energy and biomass pass along a food chain.
Figure 1

(a) The parsley shown in Figure 1 carries out photosynthesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Which diagram shows the pyramid of biomass for the food chain in Figure 1?

Why is photosynthesis important in the food chain?
Tick (\checkmark) one box.

(c) Figure 2 shows the ways a swallowtail caterpillar transfers 20 J of energy from food.

Figure 2

What percentage of the energy in the caterpillar's food is used for growth?
\qquad
\qquad
\qquad
\qquad

> Percentage =
\qquad
(d) The organisms in the food chain are adapted for survival.
(i) Figure 3 shows a swallowtail caterpillar seen from the back.

Figure 3

Suggest how the swallowtail caterpillar shown in Figure 3 is adapted to reduce the chance of being eaten by blue tits.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Figure 4 shows a hawk.

Figure 4

Suggest two ways that the hawk is adapted to catch and kill blue tits.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(Total 9 marks)
Blue tit: ©JensGade/iStock
Parsley: © Warren_Price/iStock
Caterpillar ©prettyzhizhi/iStock
Hawk: © kojihirano/iStock
Swallowtail caterpillar: © Anna_Po/iStock

Q7.

Malaria is a disease caused by a microorganism carried by mosquitoes.
The microorganism is transferred to humans when adult female mosquitoes feed on human blood.

The figure below shows the life cycle of a mosquito.

The World Health Organisation estimates that 3×10^{8} people are infected with malaria every year.

Scientists estimate that malaria kills 2×10^{6} people every year.
The people who are infected with malaria but do not die, may be seriously ill and need health care for the rest of their lives.
(a) Based on the estimated figures, what percentage of people infected with malaria die from the disease?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) An internet article states:

1 Mosquito larvae are at the start of the food chain for some fish.
2 Adult mosquitoes provide food for bats and birds.
3 Mosquitoes are also important in plant reproduction because they feed from flowers of crop plants.
(i) The first sentence in the article is not correct.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A company plans to produce genetically modified (GM) adult male mosquitoes.
The GM mosquitoes will carry a gene from bacteria. The gene causes the death of offspring before they become adults.

Male mosquitoes do not feed on blood.
Scientists are considering releasing millions of adult male GM mosquitoes into the wild.

Do you think scientists should release millions of male GM mosquitoes into the wild?

In your answer you should give advantages and disadvantages of releasing GM mosquitoes into the wild.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Describe the process for creating a GM mosquito.
\qquad
(3)
(Total 11 marks)

Q8.
Students investigated a food chain in a garden.

$$
\text { lettuce } \quad \longrightarrow \quad \text { snail } \quad \longrightarrow \quad \text { thrush (bird) }
$$

The students:

- estimated the number of lettuce plants in the garden
- estimated the number of snails feeding on the lettuces
- counted two thrushes in the garden in 5 hours.

The table below shows the students' results and calculations.

Organism	Population size	Mean mass of each organism	Biomass of population	Biomass from previous	Percentage of biomass lost

For more help, please our website www.exampaperspractice.co.uk

	in g	in g	organism that is lost in \mathbf{g}		
Lettuce	50	120.0	6000		
Snail	200	2.5	500	5500	91
Thrush	2	85.0	170	330	66

(a) (i) Give two ways that biomass is lost along a food chain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Scientists estimate that about 90% of the biomass in food is lost at each step in a food chain.

Suggest one reason why the students' value for the percentage of biomass lost between the snails and the thrushes is only 66%.
\qquad
\qquad
\qquad
\qquad
(b) European banded snails have shells with different colours (light or dark) and with stripes or with no stripes.

Figure 1 shows two examples of European banded snails.
Figure 1

Figure 2 shows results from surveys in woodlands and in grasslands of the percentage of snails with light-coloured shells and the percentage of snails with no stripes.

Each point on the graph represents the results of one survey in one habitat.
Figure 2

(i) Figure 2 is a scatter graph.

Why is a scatter graph used for this data?
\qquad
\qquad
\qquad
\qquad
(ii) Compare the general appearance of snails that live in woodlands with the general appearance of snails that live in grasslands.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Suggest a reason for the general appearance of snails that live in woodlands.
\qquad
\qquad
\qquad
\qquad

Q9.

Over millions of years:

- new groups of organisms have evolved
- other groups of organisms have become extinct.
(a) If an asteroid collided with the Earth, large amounts of dust and water vapour would be thrown up into the air. This would mean less light and heat would reach the Earth's surface from the Sun.
(i) A reduced amount of light and heat could have caused the extinction of plants.

For more help, please our website www.exampaperspractice.co.uk

Suggest how.
\qquad
\qquad
\qquad
\qquad
(ii) How could the extinction of plants have caused the extinction of some animals?
\qquad
\qquad
\qquad
\qquad
(iii) Give two reasons, other than collision with an asteroid, why groups of animals may become extinct.
1.
\qquad
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) The graph shows how the rate of extinction of groups of animals has varied over the past 300 million years.

(i) If more than 10 groups of animals become extinct in a 1 million year period, scientists call this a 'mass extinction'.

How many mass extinctions occurred over the past 300 million years?
(ii) How do we know what types of animals lived hundreds of millions of years ago?
\qquad
\qquad
\qquad
\qquad
(c) Use information from the graph to answer part (i) and (ii).
(i) How many years ago did the most recent mass extinction of animals occur?

Tick ($\sqrt{ }$) one box.

50 million years ago \square

65 million years ago \square

250 million years ago \square
(ii) What was the mean number of groups of animals becoming extinct per million years in the most recent mass extinction?
\qquad
(iii) Why are scientists not sure how many groups of animals became extinct in the most recent mass extinction?
\qquad
\qquad
\qquad
\qquad

Q10.
Food chains show the flow of energy through the organisms in a habitat.
(a) The diagram below shows a food chain.

For more help, please our website www.exampaperspractice.co.uk

$$
\text { grass } \longrightarrow \text { sheep } \longrightarrow \text { human }
$$

The biomass in each stage of the food chain changes as food passes along the food chain.

Draw a pyramid of biomass for this food chain.
Label the pyramid.
(2)
(b) The table below shows three food chains, A, B and \mathbf{C}.

	Food chain
\mathbf{A}	plants \longrightarrow sheep \longrightarrow human
\boldsymbol{B}	plants \longrightarrow grasshoppers \longrightarrow frogs \longrightarrow trout \longrightarrow human
\mathbf{C}	plants \longrightarrow

(i) In which food chain, \mathbf{A}, \mathbf{B} or \mathbf{C}, will the greatest proportion of biomass
\square
(ii) Give reasons why the food chain that you chose in part (b)(i) passes on the greatest proportion of biomass and energy to humans.
\qquad

Q11.

The photographs show a food chain from a seashore. The photographs are not to the same scale.
Seaweed

Limpet
© Getty Images/ Insuratelu/ Thinkstock Stock
© Paul Williamson/iStock/ Crab

Thinkstock

Students estimated the population and biomass of each of the organisms on part of a seashore.

The table shows the students' results.

Organism	Population	Mean mass of one organism in grams	Biomass of population in grams
Seaweed	50	4000	200000
Limpet	1200	30	36000
Crab	100	90	9000
Gull	2	900	

(a) (i) Use the data in the table to calculate the biomass of the gull population.
\qquad
\qquad
\qquad

Biomass = \qquad g
(ii) Draw a pyramid of biomass for this food chain.

Label the pyramid.
(b) The biomass of the crab population is much less than the biomass of the limpet population.

Suggest two reasons why.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
(2)
(Total 5 marks)

Q12.
A group of students investigated populations in a food chain in a garden.
The table shows the estimates of the number and biomass of some of the organisms the students found.

Organism	Number in the garden	Mean mass of each one in grams	Biomass of population in grams
Hedgehog	1	200	200
Slug	600	2	1200
Lettuce	60	100	

(a) (i) Calculate the biomass of the lettuce population.

Show clearly how you work out your answer.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
Biomass = \qquad grams
(ii) Use your answer to part (a)(i) to complete the pyramid of biomass.

Show the biomass of the lettuce population in the garden.

Biomass of population in grams
(b) The energy in the hedgehog population is much less than the energy in the slug population.

Explain why as fully as you can.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
(3)
(Total 7 marks)

Q13.

Scientists investigated a food chain in a wheat field immediately after the wheat had been harvested.

Red kites are birds of prey.
(a) The food chain for the wheat field is:

Wheat grains \longrightarrow Field mice \longrightarrow Red kites
What is the source of energy for the food chain?
\qquad
\qquad
(b) The table shows the data the scientists collected.

Organism	Estimated number in the field	Biomass of one organism in kg	Total biomass for field in kg
Fallen wheat grains	40000	0.0006	24.0
Red kites	2	1.0	
Field mice	200	0.04	

(i) Complete the table by calculating the total biomass of red kites and of field mice.

Write your answers in the table.
(ii) Use data from your completed table to draw a pyramid of biomass for the food chain shown in the table.

You should label each layer of your pyramid.

Total biomass for field in kg
(c) The total biomass of the red kites is less than the total biomass of the field mice.

Give two reasons why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The scientists could not find the exact number of organisms in the wheat field. Suggest two reasons why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 10 marks)

Q14.
There are two forms of peppered moth, dark and pale.
Birds eat the moths when the moths are resting on tree bark.
Pollution in the atmosphere may:

- kill lichens living on tree bark
- make the bark of trees go black.
(a) Draw a ring around the correct answer to complete the sentence.

Lichens are very sensitive to air pollution caused by
carbon dioxide.
nitrogen.
sulfur dioxide.
(b) The photographs show the two forms of peppered moth, on tree bark.

© Kim Taylor/Warren Photographic
(i) The dark form of the peppered moth was produced by a change in the genetic material of a pale moth.

Use one word from the box to complete the sentence.
characteristic clone mutation

A change in genetic material is called a
(ii) In the 19th century, pollution made the bark of many trees go black.

Explain why:

- the population of the pale form of the moth in forests decreased
- the population of the dark form of the moth in forests increased.
\qquad
(c) (i) The larvae (young) of the peppered moths eat the leaves of birch trees.

The diagram shows the food chain:
birch trees \rightarrow peppered moth larvae \rightarrow birds
Draw a pyramid of biomass for this food chain.
Label the pyramid.
(ii) Which two reasons explain the shape of the pyramid you drew in part (c)(i)?

Tick (\checkmark) two boxes.

Some material is lost in waste from the birds

The trees are much larger than peppered moth larvae

Peppered moth larvae do not eat all the leaves from the trees

The trees do not use all of the Sun's energy

Q15.

Plankton live in the sea.
Animal plankton eat plant plankton.
Graph 1 shows how the populations of the plankton change through the year in the seas around the UK.

Graph 1

(a) Basking sharks eat animal plankton. Basking sharks grow up to 8 metres long.

Look at the diagram and Graph 1.
Which is the correct shape for the pyramid of biomass to show the relationship between plant plankton, animal plankton and basking sharks, in June?

Tick (\checkmark) one box.

Graph 1 is repeated here to help you answer the following questions.

For more help, please our website www.exampaperspractice.co.uk

Graph 2 shows changes in some of the conditions in the upper layers of the sea around the UK.

For more help, please our website www.exampaperspractice.co.uk
\qquad
-
\qquad
-
\qquad
——
\qquad
-
(c) The population of animal plankton changes between April and July.

Suggest explanations for the changes.
\qquad
(d) The concentration of mineral ions changes between February and December.

Suggest explanations for the changes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad

Q16.

There are many ways to increase the efficiency of food production.
(a) The table shows the energy available to humans from two different food chains

Food chain	Energy transferred to humans in kJ per hectare of crop
Wheat \rightarrow humans	900000
Wheat \rightarrow pigs \rightarrow humans	90000

(i) Compare the amount of energy the two food chains transfer to humans.
\qquad
\qquad
\qquad
\qquad
(ii) Give one reason for the difference in the amount of energy the two food chains transfer to humans.
\qquad
\qquad
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Give methods used in the factory farming of animals.
Explain the advantages and disadvantages of these methods.

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad -
\qquad -
\qquad

\qquad

\qquad

\qquad

\qquad

\qquad
\qquad

Q17.
Students investigated a food chain in a garden.

The students found 650 aphids feeding on one bean plant.
Five ladybirds were feeding on the aphids.

Photograph supplied by Hemera/Thinkstock
(a) (i) Draw a pyramid of biomass for this food chain.

Label the pyramid.
(ii) The biomass in the five ladybirds is less than the biomass in the bean plant.

Give two reasons why.
\qquad
(b) The carbon in dead bean plants is returned to the atmosphere via the carbon
cycle.
Describe this part of the carbon cycle.
\qquad

\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
\qquad

Q18.
The photographs show four ways of farming.

EXAM PAPERS PRACTICE

Growing wheat

Keeping pigs outside

Keeping sheep outside

Keeping pigs inside

Growing wheat by Eileen Henderson [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Sheep outside by Andrew Smith [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Pigs outside by David Williams [CC-BY-SA-2.0], via Wikimedia Commons. Keeping Pigs inside supplied by iStockphoto/

Thinkstock.

The bar chart shows the amount of food produced from these four ways of farming.

(a) How much extra food can be produced when farmers grow wheat, compared with keeping sheep outside?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Answer \qquad tonnes per hectare per year
(b) Sheep eat grass.

For every 1000 g of grass eaten, a sheep increases in mass by only 50 g .
The other 950 g is lost.
How is the other 950 g lost?
Tick (\checkmark) two boxes.

(c) (i) Pigs kept inside lose less energy than pigs kept outside.

Why?
Tick (\checkmark) two boxes.

Pigs kept inside are fed more.

Pigs kept inside are kept in small pens.

Pigs kept inside are kept warm in the winter.

Pigs kept inside are healthier.

(ii) Meat from pigs kept inside is usually cheaper than meat from pigs kept outside.

Give one reason why.
\qquad
\qquad
\qquad
\qquad

Q19.

The diagram shows the annual energy flow through $1 \mathrm{~m}^{2}$ of a habitat.
The unit, in each case, is kJ per m^{2} per year.

(a) Calculate the percentage of the energy absorbed by the grass from sunlight that is transferred to the frog.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Answer \qquad \%
(b) All of the energy the grass absorbs from the sun is eventually lost to the
surroundings.
In what form is this energy lost?
\qquad
-
(c) Food chains are usually not more than five organisms long.

Explain why.
To gain full marks you must use data from the diagram.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
(d) In this habitat microorganisms help to recycle materials.

Explain how.
\qquad

> Grass by By Catarina Carvalho from Lisboa, Portugal (Flickr) [CC-BY-2.0], via Wikimedia Commons. Grasshopper by I, Daniel Schwen [GFDL, CC-BY-SA-3.0], via Wikimedia Commons. Frog by Brian Gratwicke (Pickerel Frog) [CC-BY-2.0], via Wikimedia Commons. Heron by Glen Fergus (Own work, Otago Peninsula, New Zealand) [CC-BY-SA-2.5], via Wikimedia Commons.

Q20.

Green plants are found at the start of all food chains.
(a) Complete the sentences.
(i) The source of energy for green plants is radiation from the
\qquad
(ii) Green plants absorb some of the light energy that reaches them for a process called \qquad
(b) Draw a ring around the correct answer to complete each sentence.

(ii) The process uses the gas $\begin{array}{ll}\text { carbon dioxide. } \\ \text { oxygen. } \\ \text { water. }\end{array}$
(iii) The process produces carbon-containing compounds called
> carbohydrates.
> minerals.
> salts.
(1)
(c) The amount of living material (biomass) at each stage in a food chain is less than at the previous stage.

The diagram shows a food chain.

$$
\text { oak tree } \longrightarrow \text { caterpillar } \longrightarrow \text { blue-tit } \longrightarrow \text { hawk }
$$

Give two ways in which biomass is lost in this food chain.
Tick (\checkmark) two boxes.

As carbon dioxide from the caterpillar

As food eaten by the hawk \square

As oxygen from the oak tree

As faeces (droppings) from the blue-tit \square

Q21.
The diagram shows the annual flow of energy through a habitat.
The figures are in $\mathrm{kJ} \mathrm{m}^{-2}$.
Sunlight
4×10^{6}

(a) (i) Calculate the percentage of the energy in sunlight that was transferred into energy in the green plants.

Show clearly how you work out your answer.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Answer }=\ldots \text { \% }
$$

(ii) Suggest reasons why the percentage energy transfer you calculated in part (a)(i) was so low.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Compare the amount of energy transferred to the insect-eating birds with the amount transferred to the predatory birds.

Suggest explanations for the difference in the amount of energy transferred to the two types of bird.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
(3)
(Total 7 marks)

Q22.
There are plans for a 'cattle factory' to be built in the UK.
Information about the cattle factory and traditional cattle farming in the UK is given below.

Cattle factory

Traditional cattle farming

Cattle factory by Pirhan [CC BY-SA 2.0], via Flickr. Traditional cattle farming by Mat Fascione[CC-BY-SA-2.0], via Wikimedia Commons

Cattle factory

- There will be over 8000 cows in three large sheds.
- Each cow will be milked three times a day.
- Each cow will produce about 50 litres of milk every day.
- Waste will be collected and used to produce electricity for 2000 homes.
- Cows are kept near to each other so disease can spread easily.

Traditional cattle farming

- Most farms have between 5 and 500 cows.
- The cows spend most of the time in fields.
- Cows are milked once or twice a day.
- Each cow produces up to 20 litres of milk a day.
- The waste is used as natural fertiliser for crops.
(a) Use the information to answer the questions.
(i) Give two reasons why some people think the cattle factory is a good idea.

1.

\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(ii) Give two reasons why some people think traditional farming is better than the cattle factory.
1.
\qquad
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows what happens to 100 kJ of energy in the food eaten by a cow on a traditional farm.

By Dohduhdah (Own work) [Public domain], via Wikimedia Commons
Use your knowledge and the information in the diagram to answer this question.

Compare the transfer of energy from the food eaten by cows in the cattle factory with the energy transferred by cows on a traditional farm.

Use words from the box to complete the table.

more	less	the same

Energy	Amount of energy transferred by cows in a cattle factory compared with cows on a traditional farm
transferred for growth and milk	
transferred in respiration	

(2)
(Total 6 marks)

Q23.

A group of students investigated a food chain in a garden.
The table shows the estimates of the population and biomass of some of the organisms the students found.

Organism	Number in the garden	Mean mass of each one in \mathbf{g}	Biomass of population in \mathbf{g}
Hedgehog	1	200	200
Slug	600	2	1200
Lettuce	20	300	

(a) (i) Calculate the biomass of the lettuce population.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad g
(ii) Use your answer to part (a)(i) to complete the pyramid of biomass.

Show the biomass of the lettuces in the garden.

(b) Hedgehogs eat slugs.

For more help, please our website www.exampaperspractice.co.uk

The biomass of the hedgehog population is much less than the biomass of the slug population.

Explain why as fully as you can.
\qquad

Q24.
The picture shows a food chain.

(a) Which diagram shows a pyramid of biomass for the food chain in the picture?

Tick (\checkmark) one box.

(b) The plants at the start of the food chain absorb energy.

Where does this energy come from?
Draw a ring around one answer.
the water
the sun
minerals
(1)
(c) Some energy is lost at each stage of the food chain.

Give two ways in which energy may be lost from the food chain.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
(2)
(Total 4 marks)

Q25.
The table shows energy transfers in a large insect and a small mammal.
Both animals feed mainly on grass.

Energy transfer	Amount of energy in kJ.	
	Large insect	Small mammal
Eaten as grass	4.00	25.00
Absorbed into body	1.60	12.50
Leaves body as faeces	2.40	12.50
Production of new tissue	0.64	0.25
Transferred by respiration	0.96	12.25

(a) What percentage of the energy in food is transferred into new tissue in the large insect?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \%
(b) The proportion of energy in the food transferred into new tissue is much greater in the large insect than in the small mammal.

Explain why as fully as you can.

You should include references to the data in your answer.
\qquad

\qquad

\qquad
\qquad

Q26.
A fish farmer keeps trout in a large net in a lake.

For more help, please our website www.exampaperspractice.co.uk

The fish farmer feeds the trout on food made from soya beans.
When the trout are large enough the farmer sells them for food for people.
(a) Draw a pyramid of biomass for the three organisms in this food chain.

Label the pyramid.
(b) It would be more energy efficient if people ate the soya beans rather than eating the trout.

Which two of the following are reasons for this?
Tick (\checkmark) two boxes.

Some people do not like eating animals such as trout.

The trout release energy when they respire.

Soya bean plants release energy when they respire. \square

Some energy will be lost in waste from the trout.

Soya bean plants absorb energy during photosynthesis. \square
(c) Suggest one advantage to the fish farmer of keeping the trout in a large net instead of letting them swim freely in the lake.
\qquad
-
(d) Some trout die before they are large enough to be sold.

The dead trout contain carbon.
Use your knowledge of the carbon cycle to describe how this carbon is returned to the atmosphere after the trout die.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q27.
(a) Diagram 1 represents what happens to the energy in the food eaten by a herbivore
(an animal that eats plants).

(i) How much energy is released in respiration by the herbivore?
\qquad
\qquad
\qquad
\qquad
Answer \qquad MJ per day
(ii) What proportion of the total energy intake of the herbivore is used for growth?

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Proportion \qquad
(b) Give two ways in which the energy, released in respiration, is used by a

For more help, please our website www.exampaperspractice.co.uk
herbivore.
1.
\qquad
2.
\qquad
\qquad
(c) Diagram 2 represents what happens to the energy in the food eaten by a carnivore
(an animal that eats other animals).

Total energy intake 40 MJ per day

Diagram 2

$|$

Energy

released in
respiration

Energy lost

 in wasteThe carnivore releases a greater proportion of energy in respiration than the herbivore.

Suggest one reason for this.
\qquad
\qquad
\qquad
\qquad
(d) Some farmers keep their animals outdoors. Other farmers keep their animals indoors.

For more help, please our website www.exampaperspractice.co.uk

Keeping farm animals indoors increases the proportion of energy in their food that is converted into growth.

Give two reasons why.
1.
\qquad
\qquad
2.
\qquad
\qquad
\qquad

Q28.
The diagram shows a pyramid of biomass drawn to scale.

(a) What is the source of energy for the water plants?
\qquad
\qquad
(b) The ratio of the biomass of water plants to the biomass of insects is $5: 1$.

Calculate the ratio of the biomass of insects to the biomass of frogs.
Show clearly how you work out your answer.

For more help, please our website www.exampaperspractice.co.uk
\qquad
-

$$
\text { ratio }=\ldots: 1
$$

(c) Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad -
(d) Some insects die.

Describe how the carbon in the dead insect bodies may be recycled.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
-
\qquad
\qquad

Q29.

(a) The diagrams show three pyramids of biomass.
(i) Which pyramid would be the most efficient in providing food for humans?

Tick ($\boldsymbol{\imath}^{\prime}$) one box.

(ii) Give one reason for your choice.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE
\qquad
\qquad
(b) Pigs may be kept indoors or outdoors.

Pigs kept indoors

Pigs kept outdoors

The pie charts show what happens to the energy in the food eaten by pigs kept indoors and pigs kept outdoors.

Pigs kept indoors

Pigs kept outdoors

Key
\square Urine and faeces
\square Growth
\square Heat
\square Movement

(i) Farmers make more profit from keeping pigs indoors than from keeping pigs outdoors.

Use information from the pie charts to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Meat from pigs kept outdoors may cost more than meat from pigs kept indoors.

Some people prefer to buy meat from animals that have been kept outdoors.

Suggest one reason why.
\qquad
\qquad
\qquad
\qquad

Q30.
The photograph shows what happens to some of the energy in the food that a cow eats.

(a) Calculate the percentage of the energy in the cow's food that is transferred into new growth.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad

Answer = \qquad \%
(b) The energy from the cow's food which is not transferred into new growth is
lost.
Give three ways in which this energy is lost.
1.
\qquad
\qquad
\qquad
2.
\qquad
-
\qquad
3.
\qquad
-
\qquad
\qquad
(c) The animals that we raise for food are usually herbivores (plant eaters) rather than carnivores (flesh eaters).

Explain why.
\qquad

Q31.
(a) Tuna fish are carnivores. In the wild they feed on smaller fish called herring.

For more help, please our website www.exampaperspractice.co.uk

Herring feed on plankton. Tuna can be attacked by parasitic worms which feed on their flesh
(i) In the space below sketch the appearance of a pyramid of biomass for this food chain.

Do not forget to label each section of the pyramid.
(ii) If a tuna eats 1 kg of herring, it gains about 65 g in mass.

Give two reasons why so little of the mass of the herring is converted into mass of the tuna.
1.
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) Young tuna are caught by fish farmers and reared in large pens in the sea.

The fish are fed more food than they would normally catch themselves so they grow quickly. When they reach 400 kg they are sold.

The graph below shows the effect of feeding tuna different amounts of protein in their food.

For more help, please our website www.exampaperspractice.co.uk

(i) Calculate the average increase in mass per month of the fish fed on the low-protein diet over the six months.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Average increase in mass per month \qquad kg
(ii) There is not enough information in the graph to allow the fish farmer to decide whether to use the high-protein diet or the medium-protein diet.

Suggest one other piece of information that he needs in order to make this decision.
\qquad
\qquad
\qquad
\qquad
(c) Some consumers will not buy tuna grown in this way.

Suggest one reason for their decision.
\qquad
\qquad
\qquad

Q32.
The diagram shows what happens to some of the energy in the food that a chicken eats.

(a) Calculate the percentage of energy used for growth.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad

Energy used for growth = \qquad \%
(b) The energy that is not transferred into growth is lost.

Give three ways in which this energy is lost.
1.
\qquad
2.
\qquad
3.

For more help, please our website www.exampaperspractice.co.uk
\qquad
(c) The pictures show two ways of keeping chickens to produce eggs.

Battery chickens produce more eggs per year than free-range chickens.
Suggest one reason why.
\qquad
\qquad
\qquad
-
(d) The animals that we raise for food are usually herbivores (plant eaters) rather than carnivores (flesh eaters).

Explain why.
\qquad

For more help, please our website www.exampaperspractice.co.uk

Q33.

The diagram shows a food chain in a pond. The figures show the amounts of energy in each type of organism, in kilojoules per m^{2} of pond per year.

(a) Calculate the percentage of the energy in the plants that is passed to the top carnivores. Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
Answer \qquad \%
(b) In the space below, draw a pyramid of biomass for this food chain. Label your drawing with the names of the organisms.
(c) If humans ate organisms from this food chain, it would be more efficient to eat plants than to eat herbivores. Why is this?
\qquad
\qquad

Q34.

This is a simple food chain.
Lettuce plant \rightarrow Slug \rightarrow Frog \rightarrow Heron
The diagram shows a pyramid of biomass for this food chain.

\qquad
\qquad
\qquad
(a) Write the names of the organisms in the food chain on the correct lines next to the pyramid of biomass.
(b) (i) The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant?
\qquad
\qquad
(ii) What is the function of chlorophyll in a lettuce plant?
\qquad
\qquad
(iii) The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly how you work out your final answer.

Amount of energy =
$\frac{(\text { Percentage of energy used by slugs) } \times(\text { Amount of energy in lettuce) }}{100}$

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Amount of energy = \qquad kJ

Q35.

Figure 1 shows a food chain containing three organisms.

Figure 1
(a) (i) In this food chain, name:
the predator;
the prey.
\qquad
(ii) What is the source of energy for the grass?

For more help, please our website www.exampaperspractice.co.uk

Draw a ring around one answer.
carbon dioxide light nitrates water
(iii) Figure 2 shows a pyramid of biomass for the organisms in Figure 1. Write the names of the organisms on the correct lines in Figure 2.

Figure 2
(b) Waste materials, like faeces from the animals, will decay,
(i) What sort of organisms cause decay?
\qquad
(ii) Three of the following conditions help decay to occur rapidly.

Which conditions do this?
Draw a ring around each of the three answers.
aerobic anaerobic cold dry moist w
arm
(iii) The list below gives four substances. Two of these substances are produced by decay and can be used by the grass.

Which two substances are these?
Tick (\boldsymbol{v}^{\prime}) two boxes.

Carbon dioxide \square

Mineral salts \square

EXAM PAPERS PRACTICE

Oxygen

\square

Protein

\square

Mark schemes

Q1.
(a)

extra line from a scientific term cancels the mark
(b) $\frac{10}{200} \times 100$
$5 / 5.0$
(c) digestion
respiration
excretion
in this order only
(d) fewer are eaten (by small fish)
allow there are fewer (small) fish eating them do not accept none are eaten

Q2.
(a) x-axis: scale + labelled, including units
scale $\geq 1 / 2$ width of graph paper label: biomass in $\mathrm{g} / \mathrm{m}^{2}$
bar widths correct
$\pm 1 / 2$-square each side
allow 1 mark if 3 correct
all 4 bars correctly labelled
large fish + small fish + invertebrate (animals) + algae
or
(trophic level) $4+3+2+1$
or
tertiary consumer + secondary consumer + primary consumer + producer ignore bar heights
(b) $\frac{840-10}{840} \times 100$
allow equivalent calculation
98.809523... / 98.810 / 98.81 / 98.8

99
allow answer given to two significant figures from an incorrect calculation in step 2
an answer of 99 scores 3 marks
(c) inedible parts / example
allow eaten by other animals or not all organisms eaten

Or
egested / faeces
allow not digested
allow excretion / urine
ignore waste
or
respiration / as CO_{2}
ignore energy losses
ignore movement
(d) bacteria decay organic matter / sewage / algae / dead plants
(by) digestion
allow example such as starch broken down to sugar
or
protein broken down to amino acids
(and) bacteria respire aerobically
or
respire using oxygen
(which) lowers oxygen concentration (in water)
or
fish have less oxygen
allow reduced respiration of fish
(so) reduced energy supply causes death of fish
allow toxins in the sewage kill fish
ignore pathogens or (pathogenic) bacteria cause
disease in fish and kills them

Q3.
(a) any two from:

- sprinkled through air
- air spaces between stones
- thin layer over stones (for efficient diffusion)
- slow flow (for efficient diffusion)
(b) green algae
(c) (large / small) protist
(d) Level 2 (3-4 marks):

Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.

Level 1 (1-2 marks):
Facts, events or processes are identified and simply stated but their relevance is not clear.

No relevant content (0 marks)

Indicative content

digestion:

- (external) enzymes released
- role of enzymes - e.g. amylase / protease / lipase
- substrates \& products - e.g. starch \rightarrow sugar / protein \rightarrow amino acids / fat \rightarrow fatty acids

absorption:

- by diffusion / active transport

deamination:

- amino acids \rightarrow ammonia / ammonium ions
release of other ions:
- e.g. phosphate / nitrate / magnesium

respiration:

- produces carbon dioxide (+ water)
or
equation is given
- release of energy allows other processes to take place e.g. active transport

Q4.
(a) $0.03=\frac{\text { output }}{5950+50} \times 10$ an answer of 1.8 scores 3 marks
output $=\frac{0.03 \times(590+50)}{100}$
1.8
(b) indoor \% efficiency $=\frac{40}{10000+6000} \times 100$
or
$\frac{40}{16000} \times 100$
0.25(\%) an answer of 8.33 scores 3 marks allow 8 / 8.3 / 8.333...
$\left(\frac{0.25}{0.03}=\right) 8.33$ (times)
(c) any two from:

- in faeces / egestion
or
not all food is absorbed
- not all food is ingested
- in urine / excretion
- in respiration
- keeping warm
- movement
do not accept 'for respiration'
allow as 'heat'
(d) warmer indoors so less energy wasted in keeping warm
allow less energy lost as 'heat'
less movement indoors so less energy wasted

if no other mark awarded, allow it is warmer and there is less

 movement indoors for $\mathbf{1}$ mark
Q5.

(a) snail
or
shrew
additional incorrect answer negates correct answer
(b) shrew
additional incorrect answer negates correct answer
(c) fewer shrews to eat them
(d) population
(e) \mathbf{C}
(f) $(11000 \times 0.1=)$ 1100 (kJ)
(g) the snails do not eat the roots of the lettuces
(h) any one from:

- light (intensity)
- temperature
- moisture (levels)
- soil pH
- mineral / ion content (of soil)
- wind intensity / speed
ignore wind direction
- carbon dioxide (levels)
- oxygen (levels)

Q6.
(a) any two from:

- idea of absorption of light / energy
- transfer to chemical energy
allow produce sugars / glucose / starch / carbohydrate / food / biomass
- provides food / energy for animals / caterpillar
- releases oxygen
(b)

(c) $15(\%)$
allow 1 mark for $\frac{3 \times 100}{20}$ with no answer or incorrect answer or
allow 1 mark for 0.15
(d) (i) any two from:
- markings look like eyes / face / mouth of much larger animal
- looks fierce / scary / dangerous
allow it looks like a snake
- to frighten blue tit / bird
max 1 if reference to camouflage
(ii) any two from:
- sharp / long / big claws ignore strong
- sharp / hooked beak ignore strong / big
- large wings or flies quickly allow streamlined / aerodynamic ignore powerful wings
- good eyesight

Q7.
(a) $0.67(\%)$
allow $0 . \dot{6}$ or 0.7
allow 1 mark for evidence of $\left(2 \times 10^{6}\right) \div\left(3 \times 10^{8}\right)$
or
allow 1 mark for 0.0067 or 0.6
(b) (i) idea that food chains start with plants / producers
allow food chains do not start with animals or larvae are consumers
idea that these make food (for other organisms in the chain)
allow idea that plants / producers photosynthesise or plants / producers get energy from the sun
allow mosquito larvae do not make food / photosynthesise or
mosquito larvae do not get energy from the sun
(ii) any four from:

- reasoned argument for or against release must refer to at least one advantage and one disadvantage. max 3 marks for either only advantages or only disadvantages
advantages:
- fewer mosquitos biting or spreading malaria
- fewer people get / die from malaria allow people won't get / die from malaria
- lower medical costs (for those infected or for treatment) or less healthcare needed
- better economically for developing / tropical countries.
disadvantages:
- fewer crops reproduce allow fewer crops pollinated
- poorer crop yield
- possible starvation (of people)
- high cost of GM production / mosquito release
- less food for bats / birds or bats / birds die allow disruption to food chain / ecosystem or reduction of biodiversity
- gene could 'escape’ into other wildlife / species ignore into plants
(iii) any three from:
- gene from bacteria cut out
allow allele for gene
- ref to enzymes (anywhere in process)
allow at any point in process, ie in cutting or in splicing
- (gene) transferred to chromosome of mosquito
allow DNA for chromosome
- at an early stage of development
allow egg / embryo

Q8.
(a) (i) any two from:

- not all eaten
allow eaten by other animals
- used for respiration
ignore used / lost in heat / movement
- lost as CO_{2} / water / urea
- lost as faeces or not all digested
if neither mark awarded allow 1 mark for lost as waste
ignore references to energy losses
do not allow for growth / repair / reproduction
(ii) any one from:
- thrushes eat other things
- thrush numbers likely to vary (considerably) allow it is only an estimate (of population size) or only counted thrushes for 5 hours
- thrushes were not present all the time
- thrushes feed on a much bigger area
(b) (i) any one from:
- there are two dependent variables
- there is no independent variable
- to show the association / correlation / pattern (between the two variables)
(ii) (snails in woodlands)
more have dark(er) colour(ed shells) or fewer have light-coloured shells allow converse for grassland, if clear
(shells have) no / fewer stripes or have no stripes
allow converse for grassland, if clear
(iii) less likely to be seen (by predators / birds / thrushes) allow camouflaged (from predators / birds / thrushes)
allow light coloured shells with stripes would be more visible (to predators / birds / thrushes in woodland (than grassland)).

Q9.
(a) (i) reduced photosynthesis
ignore growth
do not allow need light for respiration
(ii) less food (for animals) or less oxygen (for animals)
allow loss of habitat
(iii) any two from:
accept 2 physical factors or 2 biological factors or one of each for full marks
examples of physical factors, eg

- flooding
- drought
- ice age / temperature change
ignore pollution
- volcanic activity
examples of biological factors, eg
- (new) predators (allow hunters / poachers)
- (new) disease / named pathogen
- competition for food
- competition for mates
- cyclical nature of speciation
- isolation
- lack of habitat or habitat change

If no other answers given allow natural disaster / climate change / weather change / catastrophic event / environmental change for 1 mark
(b) (i) 3
(ii) fossils
ignore bones, remains, fossil fuels
(c) (i) 65 million years ago
(ii) 17
allow ecf
(iii) fossil record incomplete
or
some fossils destroyed
accept not enough evidence
or
cannot perform experiment to test

Q10.
(a) 3-layered triangular pyramid as blocks or layered triangle, ignore (small) gaps between layers
(pyramid) labelled in food chain order all three labels are required for 2 marks the pyramid must be fully correct
(b) (i) C
(ii) shortest or fewest stages / transfers / (trophic) levels
allow only if (b)(i) is C or blank
less losses in waste / faeces / urine / CO_{2} / excretion allow smaller amount uneaten
less loss in respiration / heat / movement allow less lost keeping warm do not allow energy for respiration do not allow respiration makes energy allow less loss (of biomass / energy) or less transfer (of biomass / energy) to surroundings if neither $2^{\text {nd }}$ nor $3^{r d}$ point given, for 1 mark

Q11.
(a) (i) $1800(\mathrm{~g})$
(ii) triangular pyramid with four layers
accept ecf from (a)(i)
allow inverted pyramid
correctly labelled in order of food chain
(b) any two from:

- (lost as) crab faeces / not all digested
allow waste / excretion for one mark if neither faeces nor urine are given
- (lost as) crab urine / urea
- loss of carbon dioxide by crab
accept (lost via) respiration
- not all the limpet is eaten eg don't eat the shell
- not all limpets are eaten (by crabs)
allow not enough crabs to eat all the limpets / the limpet population
ignore energy losses, such as movement

Q12.
(a) (i) 6000
award 2 marks for correct answer irrespective of working
allow 1 mark for 60×100 with incorrect or no answer allow answer in table if answer line blank
(ii) bar width 6000 or to match answer to (a)(i)
anywhere on scale ignore depth / height of bar
drawn below slugs
label not required
(b) any three from:
ignore references to number / size / mass of organisms assume reference is to / of hedgehog unless stated otherwise

- respiration (by hedgehog) do not accept idea that respiration uses / produces energy
- faeces (of hedgehog) or (slug) not absorbed (by hedgehog) or (slug) not digested (by hedgehog) /
- excreted / urine / urea (by hedgehog)
accept waste for 1 mark if neither faeces nor excretion point made
- not all slug (s) eaten (by hedgehogs) or some slugs eaten by other things or not all parts (of slug) eaten
ignore (some) slugs die
- movement (by hedgehog)
- heat (from hedgehog)
allow appropriate references to biomass lost by these methods, rather than energy losses

Q13.
(a) Sun / sunlight / light accept radiation from the Sun / solar energy
(b) (i) $2(.0)$

8 (.0)
(ii) 3 layers of decreasing size as they go up
labelled wheat grains, field mice, red kites in correct order of food chain

> sizes correct (showing half on each side)
> allow ecf from (b)(i)
> error \pm half square
(c) any two from:

- not all the field mice are eaten
- not all parts of eaten mice are absorbed / some passed as faeces (of red kite)
- due to respiration (of red kites) / production of CO_{2}
allow reference to uric acid / urea / urine (of red kite)
reference to waste / excretion alone gains 1 mark
(d) any two from:
- cannot find all wheat grains / too many to count
- field mice hiding / in hedgerows
allow ref to hibernation / nests / burrows
- red kites / mice come and go all the time
allow count an organism more than once

Q14.
(a) sulfur dioxide
(b) (i) mutation
(ii) pale form now (more) easily seen (by predators) or dark form now less easily seen (by predators)
accept ref to camouflage
so pale form (more) likely to be eaten or dark form less likely to be eaten
so dark form (more likely to) breed / pass on genes

Or
pale form less likely to breed / pass on genes
(c) (i) pyramid of three layers of diminishing size either way up
three labels in food chain order award 2 marks only if the pyramid is correctly labelled accept trees / birch
accept (peppered) moth(s) / larvae
(ii) some material is lost in waste from the birds

Q15.
(a)

(b) increasing / higher light / temperature ignore references to months other than February - April do not accept mineral / ions increase
more / increased photosynthesis
for both marks there must be a reference to 'more' at least once (e.g. 'more light for photosynthesis' gains 2 marks) allow 1 mark for reference to light and photosynthesis without an idea of 'more'
(c) increase due to increase in plant plankton / food
ignore references to months other than April - July
decrease due to fall in plant plankton / food or decrease as eaten by (basking) sharks
allow decrease as eaten by predators / animals / fish
(d) fall due to use / intake by plant (plankton)
ignore ref to no change section of graph
for fall allow March / April
ignore May / February
increase due to decay / decomposition / breakdown
for increase allow any month in range August to November ignore December
of dead (plant / animal) plankton
allow of dead organisms / waste

Q16.

(a) (i) wheat \rightarrow humans chain transfers 10 times more energy than wheat \rightarrow pigs \rightarrow humans chain allow 10% if given as a comparison e.g. one is 10% of the other
or
wheat \rightarrow pigs \rightarrow humans chain transfers 810000 (kJ per hectare) less ignore less unqualified
(ii) any one reason for energy loss from pigs e.g:
ignore respiration, growth
ignore heat unqualified

- movement
- (maintaining) body temperature
- waste materials
allow named examples
- not all parts of pig eaten by human
- because there is an extra stage (pigs) in the food chain and energy is lost at each stage
allow longer food chain so more energy lost
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a basic description of at least one factory farming method
or
identification of an advantage or disadvantage of factory farming.

Level 2 (3-4 marks)

There is a description of at least one factory farming method and
an advantage or disadvantage is explained.

Level 3 (5-6 marks)

There is a description of factory farming methods

and

advantage(s) and disadvantage(s) are explained.

Examples of Biology points made in the response:

factory farming methods e.g.:

- Kept in cramped conditions / battery hens / calf crates / pig barns / fish tanks
- Controlled temperature / heating
- Controlled feeding / modified food given / growth hormones
- Controlled lighting
- Treated with prophylactic antibiotics

Advantages e.g.:

- Increased efficiency / profit / greater food production / cheaper food / faster growth
- Farmer can have more livestock
- Less energy is lost through movement
- Less energy is used keeping warm
- (Food is high in calories / protein) so animals will grow faster / lay more eggs
- Easier to vaccinate all the animals
- Easier to protect animals from predators
- Antibiotic treatment stops infections in animals

Disadvantages e.g.:

- Stress / cruelty / inhumane / unethical
- Restricted movement / overcrowding
- Faster spread of diseases
- Antibiotics in the food chain / residual chemicals in the food chain
- Wasting fossil fuels / increasing global warming
- Increased pollution from animal waste and from additional transport

Q17.
(a) (i) triangular pyramid with 3 layers may be as blocks or as triangle ignore food chains and arrows

```
layers appropriately labelled:
bean / plant
aphid,
ladybird
labelled in food chain order must not contradict correct
pyramid
allow correctly labelled inverted pyramid for 2 marks
```

(ii) any two from:
(for aphid / ladybird)
ignore energy

- not all digested / faeces
- loss in urine
- loss of CO_{2}
ignore loss of $\mathrm{CO}_{2 \text { trom bean peant }}$
- not all eaten
if none of first 3 points given then allow waste (materials) / excretion for 1 mark
(b) microorganisms / microbes / bacteria / fungi / decomposers / detritivores /named do not accept germs
allow mould
ignore aphids
decay / breakdown / digest / decompose / rot (bean plant)
ignore eat
respiration (of microorganisms etc / aphids)
allow burning / combustion
carbon dioxide released (from respiration of microorganisms etc / aphids)
allow carbon dioxide released / produced (from burning / combustion)
ignore other parts of the carbon cycle
ignore formation of fossil fuels

Q18.
(a) 3 (.0)

> correct answer, irrespective of working gains $\mathbf{2}$ marks. if the answer is incorrect or there is no answer, award $\mathbf{1}$ mark for use of correct figures (0.5 and 3.5) [and no other figures]
(b) as faeces
if more than two boxes ticked deduct 1 mark for each additional tick
as carbon dioxide from respiration
(c) (i) pigs kept inside are kept in small pens
if more than two boxes ticked deduct 1 mark for each additional tick
pigs kept inside are kept warm in the winter
(ii) any one from:

- faster growth
ignore bigger / less flavour / fatty
- need less food
ignore references to movement / energy
- ready for market sooner
ignore ethical arguments

Q19.

(a) 0.18

> award both marks for correct answer irrespective of working if no answer or incorrect answer
> allow 1 mark for $45 \times 100 / 25000$
(b) heat / thermal
allow heat from respiration
a sensible / appropriate use of figures including heron
eg only 2 from frog / to heron
ignore units
(d) any three from:
accept marking points if candidate uses other terms for microorganisms

- (microorganisms) decay / decompose / digest / breakdown / rot ignore eat
- (breakdown) releases minerals / nutrients / ions / salts / named ignore food
- (microorganisms) respiration
ignore other organisms respiring
- (microorganisms / respiration) release of carbon dioxide

Q20.
(a) (i) sun
ignore light
apply list principle
(ii) photosynthesis
apply list principle
allow approximate spelling
do not accept phototropism
(b) (i) chemical
(ii) carbon dioxide
(iii) carbohydrates
(c) As carbon dioxide from the caterpillar
if more than 2 boxes ticked deduct one mark for each additional incorrect box

As faeces (droppings) from the blue-tit

Q21.
(a) (i) 0.6 or 6×10^{-1}
for correct answer

```
if no / incorrect answer \(\frac{2.4 \times 10^{4}}{4 \times 10^{6}} \times 100\)
or
0.006 or \(6 \times 10^{3 \text { gans } 1 \text { mark }}\)
```

(ii) any two from:

- reflected
ignore some of light is green
- not absorbed or misses chloroplasts / chlorophyll
allow transmitted or passes through leaves allow hits other plant parts
- wrong wavelength
- photosynthesis inefficient
accept other limiting factors / named
- allow some lost through respiration / as heat (from respiration)
(b) energy lost via faeces / not digested / waste / excreted (of insect-eating birds)
energy loss via respiration / movement / muscle contraction / heat (by insect-eating bird)
accept examples of muscle contraction
do not accept energy used for respiration
some of (insect eating) bird not eaten but all / most / more of insect is eaten

Q22.
(a) (i) any two from:

- more milk
(about) 50 litres milk compared to (up to) 20 litres / 30 litres more
ignore costs / profit
- electricity produced
- farmers can keep more cows in the space answers must refer to number of cows and space
(ii) any two from:
- less stress for cow or not cruel to cow or cows have freedom to move around ignore references to ethical / unnatural without qualification
- crops fertilised
- less disease or disease not as easily spread
(b) more
less
in this order

Q23.
(a) (i) 6000
award 2 marks for correct answer irrespective of working allow 1 mark for 20×300 with incorrect or no answer allow answer in table if answer line blank
(ii) bar width 6000 or to match answer to (a)(i) anywhere on scale ignore depth / height of bar
drawn below slugs
label not required
(b) any three from:
ignore reference to size / mass / number of organisms
assume reference is to / of hedgehog unless stated otherwise

- respiration (by hedgehog)
do not accept idea that respiration uses / produces energy
- (results in) loss of CO_{2}
- faeces (of hedgehog) or not digested
- excreted / urine / urea (by hedgehog)
accept waste for 1 mark if neither faeces nor excretion point made
ignore sweat alone
- not all slug(s) are eaten (by hedgehogs) or some slugs eaten by other things ignore some slugs die ignore reference to movement / heat / growth allow references to energy losses by these methods, rather than biomass losses

Q24.
(a) bottom / third pyramid ticked
extra box ticked cancels the mark
(b) the sun
extra ring drawn cancels the mark
(c) any two from:

- heat
ignore keeping warm
- movement / named example internal or external ignore digestion
- respiration
do not allow for respiration
- faeces / not all digested
allow waste for 1 mark if neither faeces nor excretion given (ie waste + movement $=\mathbf{2}$ marks waste + faeces $=\mathbf{1}$ mark
- excretion/ urine
- not all of animal / all parts eaten
do not accept growth / reproduction

Q25.
(a) 16
accept correct answer for 2 marks, irrespective of working if no answer or answer incorrect accept $0.64 \times 100 / 4$ (.0) or 0.16 for 1 mark
(b) insect cold-blooded / not warm blooded or does not control body temperature accept mammal warm-blooded / constant (high) body temperature / controls body temperature
reference to insect $0.96(\mathrm{~kJ})$ and mammal $12.25(\mathrm{~kJ})$ transferred by respiration or relevant calculation of this transfer ignore references to other data
(less respiration) so more energy / biomass / food available (for growth of insect) (more respiration) so less energy / biomass / food available (for growth of mammal)

Q26.

(a) three layer triangular pyramid either way up (as blocks or triangle)
(soya / beans / food - trout / fish - people / human (in sequence) ignore reference to producers /herbivores / consumers award 1 mark only for a correct food chain with 2 correct arrows showing energy flow
(b) the trout release energy when they respire
some energy will be lost in waste from the trout
(c) any one from eg

- easy / easier to catch / more caught
allow easy / easier to monitor
- easy / easier to feed
allow control food
- no / less predation
allow less fishing / poaching
- less energy loss
allow grow faster
- less movement
ignore less space to move
do not allow easier to farm
(d) any two from:
- microorganisms / bacteria /decomposers / microbes / fungi /detritus feeders
- decay / rot / decompose / digest /break down ignore biodegrade
- (microorganisms) respire
do not award this mark if response implies the trout respire
- turned into fossil fuels / named fossil fuels
- carbon dioxide $/ \mathrm{CO}_{2 \text { rieleased }}$

Q27.
(a) (i) 20
(ii) one tenth / $0.1 / 10 \% / 1: 9 / 1$ in $10 / 1$ out of $10 / \frac{1}{10}$ for correct answer irrespective of working 2 marks ignore any units accept equivalent fractions eg $\frac{4}{40} / \frac{2}{20}$ do not allow eg 1:10 / 1 to 10 if answer is incorrect clear selection of 2 and 20, or equivalent or 1:4:5 / 1:5:4 gains 1 mark
(b) any two from:
do not accept sweating / cooling /excretion

- (body) heat / maintaining body temperature
allow keep warm
- movement (max 2)
allow 2 different examples of movement, internally and / or externally eg breathing / exercise / eating / circulation allow muscle contraction if no other muscle action is credited movement + breathing $=1$ mark
- growth / cell division / repair / reproduction / building molecules allow examples eg making proteins (from amino acids) ignore 'chemical reactions' / digestion
- accept active transport
(c) more movement / have to hunt / catch food
allow converse if stated for herbivore eg herbivores food is all around
ignore reference to size or predator unqualified
(d) any two from
ignore reference to food
- less movement
allow no movement
allow less space to move ignore less space unqualified
- less heat loss
allow no heat loss or they are kept warm
- less respiration

Q28.
(a) the sun / light / sunshine / solar allow radiation from the sun ignore photosynthesis / respiration apply list principle do not allow water / minerals / heat
(b) $2.5(: 1)$
correct answer with or without working ignore rounding with correct working do not allow other equivalent ratios for both marks evidence of selection of 10(insects) and 4(frogs) or 50 and 20 or 1 and 0.4 for 1 mark
if no other working allow 1 mark for 0.4:(1) on answer line
(c) any two from:
allow for insects or frogs
allow energy for biomass

- \quad some parts indigestible / faeces
- waste / examples of waste eg urea / nitrogenous
compounds / urine / excretion
- movement / eg of movement
allow keeping warm
- heat
- not all eaten / eg of not all eaten
- respiration
do not accept energy for respiration
(d) any four from:
- (bodies) consumed by animals / named / scavengers / detritus feeders
- microorganisms / bacteria / fungi / decomposers
- reference to enzymes
- decay / breakdown / decompose / rot ignore digest(ion)
- respiration
- carbon dioxide produced
- photosynthesis
- sugar / glucose produced accept other organic molecules
- fossilisation / fossil fuels / named
- combustion / burning
must be linked with fossilisation / fossil fuels
- (burning) produces carbon dioxide
allow carbon dioxide produced once only

Q29.
(a) (i) tick in box of FIRST pyramid
(ii) any one from:

- less energy / biomass lost / wasted
- greatest biomass / energy for humans
ignore human box is bigger
ignore .food. for humans
- shortest food chain or less stages or least number of different organisms or only one predator or only 2 boxes tall or least boxes
allow only one stage
(b) (i) any two from:
- quicker / more growth or grow fatter
- less* urine or less faeces
- less* heat (lost)
- less* movement assume for pigs indoors allow converse if clear for pigs outdoors
(*) do not allow no for less ignore less space
(ii) any one from:
- less cruelty or more ethical or better animal welfare ignore more natural ignore ideas referring to against God's will
- better flavour / quality (of meat)
ignore pig health or free range / organic
- less pollution / etc / less fossil fuel used for heating ignore quality of life
assume for pigs outdoors
allow converse if clear for pigs indoors

Q30.
(a) 4
award both marks for correct answer, irrespective of working.
allow 125/3125 ($\times 100$) or 0.04 for 1 mark
(b) any three from:

- excreted / urine / urea(*)
- not digested / faeces(*)
$\left(^{*}\right)$ if neither of these marks is awarded then waste gains 1 mark
- methane
- respiration
do not allow for respiration
- movement / named internal / external movement
allow sound
- heat / temperature control / sweating
allow milk production
allow active transport
(c) any two from:
- no / less biomass / energy lost (by intermediate) or examples of losses herbivores contain more energy is insufficient
- shorter food chain
- cheap(er) to feed herbivores
ignore reference to carnivores being dangerous

Q31.
(a) (i) a triangular-shaped pyramid, with 4 layers - widest at the bottom either in blocks or as a triangle
labels in food chain order (from widest part) ie plankton - herring - tuna - parasitic / worms
upside down labelled pyramid with producer at top gains 2 marks
upside down labelled pyramid with producer at bottom gains 1 mark for labels
unlabelled upside down pyramid = $\mathbf{0}$ marks
accept separate boxes
correct food chain with correct arrows if given gains 1 mark

(ii) any two from:

- waste / excreted / urine / faeces / CO_{2} (from tuna)
from / of tuna not required but do not accept if of / from other organisms
- respiration (of tuna)
ignore used in reproduction
- movement (of tuna) / hunting
if a mark is not awarded for respiration / movement / heat allow 1 mark for energy (unqualified)
- used for heat (production) (of tuna)
- not digested / absorbed
(b) (i) 40
award both marks for correct answer, irrespective of working allow (290 - 50) /6 or 240/6 for 1 mark allow 48.3 / $48^{\frac{l}{3}} / 48$ for 1 mark
(ii) cost of food / protein
(c) any one from:
- concern about animal welfare or examples or cruel to tuna or unethical or lack of space
allow immoral
ignore not natural
- poorer flavour / quality

Q32.
(a) 8.3 or 8.3 recurring or 8
award both marks for correct answer, irrespective of working
$7 / 84 \times 100$ or equivalent for 1 mark
(b) any three from:

- heat
allow keeping warm
- respiration
not for respiration
- movement or example of movement eg exercise / kinetic
- faeces / waste / urine / excretion / urea ignore eggs / sound
(c) any one from:
- less / no movement allow examples of movement
- less / no heat loss
- reference to selective breeding
- reference to controlled / better / more feeding
(d) any two from:
- less steps in food chain
- less losses of biomass / energy / examples of losses
- cheaper to feed herbivores
allow dangerous to keep carnivores
herbivores contain more energy is insufficient

Q33.
(a) 0.1
ignore working or lack of working
$\frac{88 \times 100}{88000}$ for 1 mark
(b) shape: pyramid with 4 tiers

labels:
Plants + Herbivores + Carnivores + Top carnivores
(in sequence - largest to smallest)
allow suitable named examples
inverted pyramid correctly labelled = $\mathbf{1}$ mark
(c) more energy / biomass / materials / matter available or less energy lost or energy used up (by herbivores) not just plants

Q34.
(a) In sequence:
heron
frog
slug
lettuce
(b) (i) light / sun
ignore photosynthesis / respiration cancel mark if water / ions etc given do not accept heat
(ii) traps / absorbs light
accept energy for light
do not accept collects / attracts
do not accept 'traps sun'
(iii) 162
if correct answer, ignore working / lack of working $\frac{10 \times 1620}{100}$ for 1 mark

Q35.
(a) (i) (predator) lion
(prey) antelope
(ii) light
accept other positive indications
(iii) in sequence (top to bottom):
lion
antelope
grass
(b) (i) bacteria / fungi / saprotrophs accept moulds / decomposers / microorganisms / microbes / saprophytes / saprobionts
(ii) aerobic
moist
warm
accept other positive indications1
(iii) carbon dioxide
mineral salts

Q1.
The diagram shows the flow of energy through a forest. The figures are in kilojoules of energy per square metre per year.

(a) What percentage of the energy in the trees is passed on as food for the carnivores? Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
(b) Give three reasons why so little of the energy in the trees is passed on to the carnivores.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad

Q2.
The diagram below shows a food web for a wood.

(a) The diagrams below show a pyramid of the numbers and a pyramid of the biomass for 0.1 hectare of this wood.

Pyramid of Numbers
numbers/0. 1 hectare

Pyramid of Eimasa
biomass (grams per square metre)

(i) Name one organism from the level labelled X .
\qquad
(ii) Explain, as fully as you can, why the level labelled Y is such a different width in the two pyramids.
\qquad
\qquad
\qquad
\qquad
(b) Explain, as fully as you can, what eventually happens to energy from the sun which is captured by the plants in the wood.
\qquad

Q3.
The diagram below shows a food web for some of the organisms which live in a pond.

You may need to use information from the food web to help you to answer the following questions.
(a) The algae photosynthesise. Complete the equation for photosynthesis.

(b) Only a small percentage of the Sun's energy captured by the algae is eventually incorporated into the body tissues of the stickleback. Explain, as fully as you can, what happens to the rest of the energy captured by the algae.
\qquad

Q4.
The diagram below shows a food web for some of the organisms which live in a pond.

(a) (i) Name one secondary consumer in this food web.
\qquad
(ii) The algae are small green plants.

Give three conditions needed by green plants to produce sugars.

1. \qquad
2. \qquad
3. \qquad
(b) This is a pyramid of biomass for the organisms in the aquarium.

Some of the biomass of the producers is not transferred to the tertiary consumers.
Explain, as fully as you can, what happens to this biomass.
(Total 10 marks)

Q5.
A gardener pulled up weeds and used them to start a compost heap. The compost heap soon became colonised by large numbers of earthworms and slugs. The gardener then noticed a hedgehog rooting through the compost heap, eating the earthworms and slugs.

Every so often the hedgehog stopped to scratch itself. This was because it had large numbers of fleas which fed by sucking the hedgehog's blood.
(a) Use only information from the passage to answer the following.

Construct and label a pyramid of biomass for your food chain.
(b) Gardeners put plant material onto compost heaps so that it will decay. They then put the decayed compost onto soil where they are growing their plants.

Give three conditions which are needed for plant material to decay rapidly.

1. \qquad
2. \qquad
3. \qquad

Q6.
An oak wood contained the following:

> 200 oak trees
> 150000 primary consumers
> 120000 secondary consumers
(a) Draw and label a pyramid of biomass for this wood. (Your pyramid does not have to be drawn to scale.)
(b) A scientist estimated the total amount of energy flow through each level of the pyramid per year.

The results were:
Energy absorbed by oak trees 4600000 kJ per m² per year
Energy in sugar produced by trees
44000 kJ per m² per year
Energy transferred to primary consumers
2920 kJ per m² per year
Energy transferred to secondary consumers 700 kJ per m² per year
(i) Calculate the percentage of the energy absorbed by the trees that is transferred to sugar by photosynthesis. Show your working.

Answer \qquad \%
(ii) Suggest two reasons why a large proportion of the energy is not transferred to sugar.

1. \qquad
\qquad
2. \qquad
\qquad
(iii) Give three reasons why some of the energy in the primary consumers is not passed on to the secondary consumers.
3. \qquad
\qquad
4. \qquad
\qquad
5. \qquad
\qquad

Q7.
(a) The diagram shows what happens to each 1000 kJ of light energy absorbed by plants growing in a meadow.

Use the information from the diagram to calculate:
(i) how much energy was transferred to herbivores;
\qquad kJ
(ii) the percentage of the energy absorbed during photosynthesis that was eventually transferred to carnivores. Show your working.
\qquad
(b) The table gives the energy output from some agricultural food chains.

FOOD CHAIN	ENERGY AVAILABLE TO HUMANS FROM FOOD CHAIN (kJ PER HECTARE OF CROP)
cereal crop \Rightarrow humans	800000
cereal crop \Rightarrow pigs \Rightarrow humans	90000
cereal crop \Rightarrow cattle \Rightarrow humans	30000

Explain why the food chain cereal crop \Rightarrow humans gives far more energy than the other two food chains.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The amounts of energy available to humans from the food chain cereal crop \Rightarrow pigs \Rightarrow humans can be increased by changing the conditions in which the pigs are kept.

Give two changes in conditions which would increase the amount of energy available. In each case explain why changing the condition would increase the available energy.

Change of condition 1 \qquad
Explanation \qquad
\qquad
\qquad
Change of condition 2 \qquad
Explanation \qquad
\qquad
\qquad

Q8.
A food chain has four organisms, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.

$$
\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}
$$

The table shows the amount of energy transferred by each organism in one year.

Organism	Energy transferred in kJ per year
A	87000
B	14000
C	1600
D	70

Explain, as fully as you can, why organism D would transfer much less energy than organism A.
\qquad

Q9.
Energy is stored in the materials that make up organisms. These materials are called biomass.

Organisms in food chain	Rose plant	\rightarrow	Greenfly	\rightarrow	Ladybird	\rightarrow	Blackbird
Biomass in $\mathbf{g} / \mathbf{m}^{2}$	600		50		10		1

(a) Complete the pyramid of biomass for this food chain. The rose plant has been done for you. You should draw the rest of the pyramid to the same scale.
(5 small squares $=50 \mathrm{~g} / \mathrm{m}^{2}$.)

Biomass in $\mathrm{g} / \mathrm{m}^{2}$
(b) What proportion of the energy in a rose plant is transferred to greenfly?
\qquad
\qquad
\qquad
Proportion $=$ \qquad
(Total 5 marks)

Q10.
Chickens are kept as farm animals to produce food. Free-range chickens are allowed to feed in a large space outside. The diagram shows how energy supplied in food to a freerange chicken is transferred.

(a) Calculate the amount of energy "lost" in faeces.
\qquad
\qquad
Energy "lost" = \qquad kJ
(b) Some farmers use the battery method. They keep large numbers of chickens in a small indoor space. The food yield from these chickens is higher than that from freerange chickens. Explain why, as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q11.
The information in the table compares two farms. Both are the same size, on similar land,
close to one another and both are equally well managed.

Name of farm	Activity	Energy value of food for humans produced in one year	Number of people whose energy requirements can be met by this food
Greenbank Farm	Grows food for humans	3285 million kJ	720
Oaktree Farm	Grows food for animals on the farm which become food for humans	365 million kJ	80

(a) Use this information to work out the average daily human energy requirement in kilojoules (kJ) per day.
\qquad
\qquad
Energy requirement = \qquad kJ/day
(b) The figures show that farms like Greenbank Farm can be nine times more efficient at meeting human food energy requirements than farms such as Oaktree Farm.
(i) The food chain for Greenbank Farm is:

$$
\text { vegetation } \rightarrow \text { humans }
$$

What is the food chain for Oaktree Farm?
\qquad
(ii) Explain why Greenbank Farm is much more efficient at meeting human food energy requirements.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The human population has been increasing rapidly throughout this century. It is now about 6 billion and is still growing. What does the information in this question suggest about likely changes in the human diet which may need to occur during the coming century? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 10 marks)

Q12.

Compare the efficiency of these two food chains.

Food chain \mathbf{A}	grain \rightarrow humans
Food chain B	grain \rightarrow bullocks \rightarrow humans

In your answer, make full use of the following data.

Food	Consumer	Percentage of available energy transferred as useful energy
Grain	Human	9%
Grain	Bullock	12%
Bullock	Human	10%

One kilogram of grain has 80000 kJ of available energy.
\qquad

Q13.

(a) $1 \mathrm{~m}^{2}$ of a field gets about 1050 MJ of light energy per year.

Only 21 500kJ of energy is stored in the new grass.
(i) How is the energy stored in the new grass?
\qquad
(ii) What is the \% of light energy stored in the grass?
\qquad
\qquad
\qquad
(b)

The diagram shows what happens to the energy from grass in part of a field which is grazed by a bullock.

Using information in the diagram suggest why food chains are usually short.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Many of the animals which from part of our diet are herbivores rather than carnivores. Explain why as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q14.
Scientists have found the following food web in the Antarctic Ocean.

(a) (i) Write down the name of the producer in this web.
(ii) Write down the names of two organisms which are prey in this web.
\qquad
\qquad
(b) Humans are removing large numbers of the cod.

Some scientists argue that this could lead to a decrease in the numbers of squid and penguins.
Others argue that the numbers of squid and penguins will stay the same.
Carefully explain each argument.
Why they might decrease.
\qquad
\qquad
\qquad
Why they might stay the same.
\qquad
\qquad
\qquad
(c) The following information is about the biomass of the organisms in one of the food chains in the web.

Draw and label a pyramid of biomass for this chain.

Q15.

Scientists have found the following food web in the cold Antarctic Ocean.

(a) Humans are removing large numbers of the cod

Some scientists argue that this could lead to a decrease in the numbers of squid and penguins.

Others argue that the numbers of squid and penguins will stay the same.
Carefully explain each argument.
Why they might decrease.
\qquad
\qquad
\qquad

Why they might stay the same.
\qquad
\qquad
(b) The following information is about the biomass of the organisms in one of the food chains in the web.

Draw and label a pyramid of biomass for this chain.
(c) Explain, as fully as you can, why the conversion of shrimp biomass into cod biomass is more efficient than that of cod biomass into seal biomass in the cold Antarctic Ocean.
\qquad
\qquad
\qquad
\qquad
(d) Boats from many countries fish the Antarctic Ocean. The cod are being overfished. If the numbers of cod are to increase, the population must be carefully managed.
(i) Suggest two control measures which would prevent a further drop in numbers,
\qquad
\qquad
(ii) Suggest why one of your control measures would be difficult to put into

EXAM PAPERS PRACTICE
practice.

Mark schemes

Q1.
(a) $1.67 / 1^{\frac{2}{3}}$
accept 1.6 to 1.7
ignore working or lack of working $\frac{400 \times 100}{24000}$ for 1 mark
(b) any three from:
deduct only 1 mark for any mention of in carnivore
lost as heat or keeping body warm
lost in metabolic functions is not enough
lost in respiration
do not accept 'used for respiration
movement
not eaten parts or individuals / non-edible parts / dead leaves / wood / bones / faeces / urine
ignore 'waste'
ignore references to growth / reproduction

Q2.
(a) (i) vole/small bird/beetle
(ii) oak trees are large organisms;
therefore their biomass is large; but their numbers are small each for 1 mark

$$
\text { gains } 1 \text { mark }
$$

(b) 8 of:
energy stored in chemicals in cells/tissues/growth; passed up food chain;
less energy stored at each stage in food chain/pyramid level; because only part of energy taken in used for growth;
some lost in waste;
some used for repair;
used to main body systems;
some lost in respiration;
some converted into other forms of energy;
e.g. movement;
much lost as heat;
by time detritus feeders have used remains;
all returned to environment
each for 1 mark
c1 \rightarrow animals
c2 \rightarrow decomposers
2 marks for sequencing and organising the information

Q3.
(a) water
gains 1 mark
oxygen
gains 1 mark
(b) e.g.:
some materials/energy lost in animals' waste materials respiration releases energy some materials/energy used in maintenance/repair some energy used for movement much lost as heat to surroundings some organisms die (rather than eaten) reference to detritivors reference to microbes
each for 1 mark

Q4.
(a) (i) e.g. mussels/caddis loach for 1 mark
(ii) 3 of:
carbon dioxide water chlorophyll/chloroplasts light
any 3 for 1 mark each
(b) 6 of e.g.
some plant/animal material not digested by consumers passes out with faeces respiration releases energy used in movement lost as heat some 'lower' organisms die energy transferred to decomposers/detritivores thence to environment
any 6 for 1 mark each

Q5.

(a) pyramid correct shape labelled
(b) warm
moist
oxygen

Q6.
(a) levels in correct order sizes correct for 1 mark each
(b) (i) working
0.96\% (correct answer = 2)
for 1 mark each
(ii) 2 of e.g. heat up leaves absorbed by non-photosynthetic parts transmitted through leaves
any 2 for 1 mark each
(iii) 3 of e.g. respiration of primary consumers movement of p.c. waste from p.c. repair/growth of p.c.; heat losses to surroundings
any 3 for 1 mark each

Q7.
(a) (i) 200 kJ
for 1 mark
(ii) 2
(b) ideas that
energy lost by animal (pig / cattle) / extra stage / extra trophic level in waste materials e.g.
in muscular activity / movement in keeping body temperature higher than surroundings / lost as heat any three for 1 mark each references to respiration regarded as neutral
(c) ideas that
controlling (high) temperature of surroundings / keeping indoors / insulating reduces energy transferred from animal as heat / animal uses body heat to maintain temperature restricting movement (e.g. caging or keeping in darkness) reduces muscular contraction / muscular activity
each for 1 mark
accept respiration as explanation once only if neither explanation point has received credit reject give more food / different food

Q8.
any five from:

- the amount of energy (in the biomass of organisms) is reduced at each successive stage in a food chain
- all of prey organism is not consumed
- energy is 'lost' as the organisms' waste materials
- energy is transferred / lost during respiration
- energy is transferred / lost as movement (kinetic energy)
- energy is transferred / lost as heat (thermal energy)
- energy is transferred / lost to the surroundings
- the only energy transferred to a higher level is that which the organisms have used in growing
statements about energy flow the wrong way are neutral

Q9.
(a) all bars correct for greenfly, ladybird (\pm one square) and blackbird (less than one square)
bars are centred
do not accept pyramid shape if all to left or right of centre
bars are labelled (in correct sequence)
(b) $\frac{1}{12}$ or 8.3% or $1: 12$
if answer is incorrect accept correct
working out (eg $\frac{50}{600}$) for 1 mark
accept 12 or 12:1 for 1 mark
accept 8.3 for 1 mark (without \%)

Q10.
(a) 115
(b) any four from
less energy lost / used
as heat lost to the atmosphere
since warm indoors
accept temperature controlled
(less energy lost) in movement
since movement restricted
more growth / eggs
accept prevents loss of body mass or gets fatter / weight gain

Q11.
(a) 12500
incorrect numerical answer but clear evidence of correct working e.g. 365 million $\div 365 \div 80$ or 3285 million $\div 365$ $\div 720$ credit with (1)
(b) (i) vegetation
\rightarrow (farm) animals \rightarrow humans
accept any correct variation on this theme
e.g. grass \rightarrow lambs \rightarrow humans
(ii) any three linked points from

* less links in the food chain
or only one link in the food chain
* energy 'wasted’ or 'lost' or 'used' at each link
* energy 'wasted' or 'lost' in (the process of) respiration
* energy 'used' to maintain body temperature
* energy 'used' by the animals in movement
(c) people will eat more/greater proportion of food from plants
accept people will eat less/smaller proportion of food from animals
do not credit 'everyone will stop eating meat'
any three linked points from
these marks are independent of the 'prediction' mark do not credit 'food from plants will become less expensive'
* meat will become more expensive
* only a limited area of land available on the planet (for food production or otherwise)
* more people means less land available for food production because some used for housing etc.
* land will become more expensive
* land will have to be used more efficiently
or more people will go hungry
or people will (each) eat less
* livestock farmers will try to improve efficiency
* (leading to) growth of 'factory farming'
* demand for food will rise (total)

Q12.

(food chain) A gives 7200kJ
(of useful energy)
or 7.2MJ
or 7200000 J
unit essential in each case
(food chain) B gives 960kJ (of useful energy)
or 0.96 MJ
or 960000 J
unit essential in each case
credit 1 mark if both are numerically correct but unit omitted
same comparison made in each case
e.g. for each kilogram of grain
or refers to more stages in food chain results in less efficiency
(so) (food chain) A is 7.5 times more efficient than (food chain) B or for every unit of useful energy given to a person by B, A gives ${ }^{7 \frac{1}{2}}$ units or food chain B is only 13(.3)\% as efficient as food chain A or makes a correct comparison in percentage terms

Q13.
(a) (i) carbohydrate*/fat/protein in cell
(or example e.g. glucose/starch) for 1 mark
(ii) $\underline{21500} \times 100$ or $2 .(05) \%$

1050000
for 1 mark
(b) ideas that:
little energy used for growth/most wasted/lost
gains 1 mark
but
only 4\% used for new growth
gains 2 marks
evidence/idea that this is repeated at each stage idea of diminishing return/less energy at each stage for 1 mark each (maximum of 3)
(c) idea:
plants at the start of all food chains
shorter food chain more efficient/less energy lost/more food cheaper/more economic (must bear consequence of at least one of earlier marks) any three for 1 mark each

EXAM PAPERS PRACTICE

Q14.
(a) (i) (tiny green) plants / phytoplankton for 1 mark
(ii) • penguin

- shrimp
- cod
- squid
any two for 1 mark
(b) Decrease: seals will eat more squid and penguins for 1 mark

Stay the same:

- more shrimp for squid and penguins
- squid and penguins increase balances the extra eaten by seals
- seals find other prey [allow shrimps]
any two for 1 mark each
(c)

seal
cod
shrimp
credit
 for seal plants

- correct / shape (designs need to be to scale)
- correctly labelled with organisms
(if wholly correct but inverted then credit 1 mark)
each for 1 mark

plants
shrimp
cod seal

Q15.

(a) Decrease: seals will eat more squid and penguins for 1 mark

Stay the same:

- more shrimp/food for squid and penguins
ideas that
- increase in squid and penguins balances the extra eaten by seals
- \quad seals find other prey (allow start to eat shrimps)
any two for one mark each
(b)

seal cod shrimp plants credit \qquad for seal
allow

- correct shape (doesn't need to be to scale)
- correctly with organisms
(if wholly correct but inverted then credit 1 mark)
each for 1 mark
(c) - seals are mammals
- idea that seals have (to maintain) a constant body temperature [allow warm blooded]
- heat losses to cold seas
- more of food eaten used to replace heat loss
(credit use of figures i.e. 95\% loss compared to 90\%
or 5\% efficient compared to 10%
or $20: 1$ conversion ratio compared to $10: 1$
with 1 mark)
any three for 1 mark each
(d) (i) ideas that
- reduce number of fishing boats allowed
- breed in captivity and then release
- agree quotas [not an unqualified 'ban']
- avoid breeding areas
- avoid breeding seasons
- increase size of net mesh/don't catch small fish
- limit catches of shrimps
- cull seals
any two for 1 mark each
[allow any other reasonable answer]
(ii) - breeding areas closer to some countries than others
- difficult to police/easy to cheat/'poach'
- difficult to agree quotas
- some countries eat more fish than others
- best weather for fishing maybe in breeding seasons
- fisherman/trawlers need employment
- big demand for cod
any one for 1 mark
[allow any other sensible response]

