

IB Maths: AA HL Trigonometry

Topic Questions

These practice questions can be used by students and teachers and is Suitable for IB Maths AA HL Topic Questions

Course	IB Maths	
Section	3. Geometry & Trigonometry	
Topic	3.4 Trigonometry	
Difficulty	Medium	

Level: IB Maths

Subject: IB Maths AA HL

Board: IB Maths

Topic: Trigonometry

Complete the table.

Degrees	Radians	sin	cos	tan
	$\frac{\pi}{6}$		$\frac{\sqrt{3}}{2}$	
45°			$\frac{1}{\sqrt{2}}$	
60°	$\frac{\pi}{3}$			
	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$		
270°				

[5 marks]

Question 2

Given that $\sin\theta = \frac{3}{5}$, where $\frac{\pi}{2} < \theta < \pi$, find the possible values of $\cos\theta$ and $\tan\theta$.

[3 marks]

Question 3

The following triangle shows triangle ABC, with AB = 3a, BC = a and AC = 7.

Given that $\cos A\widehat{B}C = \frac{1}{2}$, find the area of the triangle. Give your answer in the form $\frac{p\sqrt{3}}{r}$ where $p,q\in\mathbb{R}$.

[7 marks]

The following triangle shows triangle ABC, with AB = 15, AC = 20, BC = x.

(a) Given that $\cos B\widehat{A}C = \frac{2}{3}$, find the value of $\sin B\widehat{A}C$.

[3 marks]

(b) Find the exact area of triangle ABC.

[3 marks]

(c) By finding the value of x, show that triangle ABC is isosceles.

A sector of a circle, OPQ, is such that it has radius 3.4 cm and the angle at its centre, O, is $\frac{3\pi}{4}$ radians.

- (i) Find the length of the arc PQ.
- (ii) Find the area of the sector OPQ.

[4 marks]

Question 6

Two non-congruent triangles both have sides AB = 5.3 cm, BC = 6.4 cm and $A\hat{C}B = 38^{\circ}$.

- Show that the angle BÂC for one of the triangles is 132°, to 3 significant figures.
- (ii) Find the angle ABC for the other triangle.

[4 marks]

Question 7

A right-angled triangle has hypotenuse 8cm. One of its other sides is 5cm.

Find exact values for $\sin \theta$, $\cos \theta$ and $\tan \theta$, where θ is the smallest angle in the triangle.

[6 marks]

The diagram below shows the sector of a circle *OAB*.

- (a) (i) Find the area of the sector OAB, giving your answer to 3 significant figures.
 - (ii) Find the area of the triangle OAB, giving your answer to 3 significant figures.
 - (iii) Find the area of the shaded segment, giving your answer to 3 significant figures.

[5 marks]

- (b) (i) Find the length of the arc AB.
 - (ii) Find the perimeter of the sector *OAB*.

The canopy of a parachute and the outermost connecting cords form a sector of a circle as shown in the diagram below, with the parachutist modelled as a particle at point O.

The area of the sector OAB is $\frac{61\pi}{200}$ m².

Find the length of one of the connecting cords on the parachute.

A plastic puzzle piece is in the form of a prism with a cross-section that is the sector of a circle, as shown in the diagram below. The radius of the sector is 8 cm, and the angle at the centre is 1.2 radians.

The height of the puzzle piece is 2 cm.

- (i) Work out the area of the cross-section.
- (ii) Hence, or otherwise, work out the volume of the puzzle piece.

The circle sector *OAB* is shown in the diagram below.

The angle at the centre is $\frac{\pi}{3}$ radians, and the line segments OC and BC have lengths of 8 cm and p cm respectively.

Additionally, CD is parallel to AB, so that AD = BC and OD = OC.

(a) Show that the area of the sector OAB is $\frac{\pi}{6}(p+8)^2$ cm².

[2 marks]

(b) Show that the area of the triangle OCD is $16\sqrt{3}$ cm².

[2 marks]

(c) Given that the area of the shaded shape ABCD is $\left(\frac{50\pi}{3} - 16\sqrt{3}\right)$ cm², find the value of p.

[4 marks]