The point P(-1,4) lies on the curve with equation y = f(x).

State the coordinates of the image of point ${\cal P}$ on the curves with the following equations:

- (i) y = f(x) + 3
- (ii) y = f(x+3)
- (iii) y = 3f(x)
- (iv) y = f(3x)

i) VERTICAL TRANSLATION Y CHANGES +3

(-1, 7)

HORIZONTAL TRANSLATION & CHANGES

[4]

- (-), (2)
- iv) HORIZONTAL STRETCH ∞ CHANGES $\times \frac{1}{3}$ $\div 3$

Question 2

The point P(-3, -4) lies on the curve with equation y = f(x).

State the coordinates of the image of point ${\cal P}$ on the curves with the following equations:

- (i) y = f(-x)
- (ii) y = -f(x)

MORIZONTAL REFLECTION YAXIS

SC CHANGE

VERTICAL REFLECTION DC AXIS

y CHANGES

(-3, 4)

[2]

[4]

Question 3

The point P(3,2) lies on the curve with equation y = f(x).

- (i) On the graph of y = f(x) + a, where a is a constant, the point P is mapped to the point (3,-5). Determine the value of a.
- (ii) On the graph of y = f(x + b), where b is a constant, the point P is mapped to the point (-1, 2). Determine the value of b.
- (iii) On the graph of y = cf(x), where c is a constant, the point P is mapped to the point (3,1). Determine the value of c.
- (iv) On the graph of y = f(dx), where d is a constant, the point P is mapped to the point (1,2). Determine the value of d.

i) VERTICAL TRANSLATION Y CHANGED +0 $(3,2) \Rightarrow (3,-5)$ $\alpha = -7$

HORIZONTAL TRANSLATION OF CHANGED -1 $(3,2) \Rightarrow (-1,2) \qquad b = 4$

VERTICAL STRETCH $y \in Angen$ $(3,2) \Rightarrow (3,1)$ $C=\frac{1}{2}$

(V) HORIZONTAL STRETCH >C CHANGED $\times \frac{1}{d}$ $(3,2) \Rightarrow (1,2)$ d = 3

[4]

[2]

Question 4

The diagram below shows the graph of y=f(x). The two marked points A(-1,5) and B(3,-3) lie on the graph.

(a) In separate diagrams, sketch the curves with equation TRANSLATIONS

(i)
$$y = f(x-1)$$
 HORIZONTAL ∞ CHANGES +1
(ii) $y = f(x) + 3$ VERTICAL Y CHANGES +3

On each diagram, give the coordinates of the images of points \boldsymbol{A} and \boldsymbol{B} under the given transformation.

(b) On the graph of y = f(x + a) the image of one of the two marked points has an x coordinate of 2. Find the two possible values of a.

The diagram below shows the graph of y = f(x). The marked point B(4,8) lies on the graph, and the graph meets the origin at the marked point A.

(a) In separate diagrams, sketch the curves with equation

(i)
$$y = -f(x)$$
 VERTICAL REFLECTION YCHANGES (>CAXIS)
(ii) $y = f(4x)$ HORIZONTAL STRETCH XCHANGES X $\frac{1}{4}$

On each diagram, give the coordinates of the images of points A and B under the given transformation.

[4]

(b) On the graph of y = af(x) the image of one of the two marked points has a ν coordinate of 4. Find the value of a.

[2]

The diagram below shows the graph of y = f(x). The marked point B(4,8) lies on the graph, and the graph meets the origin at the marked point A.

(a) In separate diagrams, sketch the curves with equation

(i)
$$y = -f(x)$$

(ii)
$$y = f(4x)$$

On each diagram, give the coordinates of the images of points A and B under the given transformation.

[4]

(b) On the graph of y = af(x) the image of one of the two marked points has a y coordinate of 4. Find the value of a.

2)

A=(0,0) WONT CHANGE $B=(4,8) \Rightarrow (4,4)$

The diagram below shows the graph of y=f(x). The graph intersects the coordinate axes at the two marked points A(0,6) and B(3,0). The graph has two asymptotes as shown, with equations $y=\frac{20}{3}$ and $x=\frac{10}{3}$.

(a) In separate diagrams, sketch the curves with equation $% \left(x_{1},y_{2}\right) =\left(x_{1},y_{2}\right)$

(i)
$$y = f(x) - 6$$
 VERTICAL TRANSLATION Y CHANGES - 6
(ii) $y = f(-x)$ HURIZONTAL REFLECTION OCCHANGES

On each diagram, give the coordinates of the images of points *A* and *B* under the given transformation, as well as stating the equations of the transformed asymptotes.

[6]

(b) The graph of y=f(x+a) has an asymptote at one of the coordinate axes. Find the value of a.

[2]

The diagram below shows the graph of y=f(x). The graph intersects the coordinate axes at the two marked points A(0,6) and B(3,0). The graph has two asymptotes as shown, with equations $y=\frac{20}{3}$ and $x=\frac{10}{3}$.

(a) In separate diagrams, sketch the curves with equation

(i)
$$y = f(x) - 6$$

(ii)
$$y = f(-x)$$

On each diagram, give the coordinates of the images of points A and B under the given transformation, as well as stating the equations of the transformed asymptotes.

[6]

(b) The graph of y = f(x + a) has an asymptote at one of the coordinate axes. Find the value of a.

[2]

b) MORIZONTAL TRANSLATION

CHANGES

_

$$\mathcal{K} = \frac{10}{3} \implies \mathcal{K} = 0$$

$$\frac{10}{3}$$

 $Q = \frac{10}{3}$

Question 7

Describe, in order, a sequence of transformations that maps the graph of $y={\sf f}(x)$ onto the following graphs:

(i)
$$y = 3f(x + 2)$$
,

(ii)
$$y = f(-x) - 1$$
.

DEALWITH INSIDE BRACKETS FIRST

INSIDE = HORIZONTAL OUTSIDE = VERTICAL

TRANSLATION BY $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ VERTICAL STRETCH SF. 3

REFLECTION IN Y AXIS (OR 20)

TRANSLATION BY (0)

[3]

[4]

Question 8

Given that $f(x) = 3x^2 - 2x$ find an expression for g(x), where g(x) is obtained by applying the following sequence of transformations to f(x).

- 1. Translation by $\binom{2}{0}$
- 2. Vertical stretch of scale factor 4
- 3. Translation by $\binom{0}{-3}$

1.
$$f(x) \Rightarrow f(x-2)$$

$$3x^{2}-2x \Rightarrow 3(x-2)^{2}-2(x-2)$$

$$3(x^{2}-4x+4)-2x+4$$

$$3x^{2}-14x+16$$
2.
$$f(x-2) \Rightarrow 4f(x-2)$$

$$4(3x^{2}-14x+16)$$

$$12x^{2}-56x+64$$
3.
$$4f(x-2) \Rightarrow 4f(x-2)-3$$

$$12x^{2}-56x+64-3$$

$$g(x)=12x^{2}-56x+61$$

 α

Question 9

(a) (i) Sketch the graph of y = p(x), where p(x) = 3x - 4. (ii) On the same set of axes, sketch the graph of $y = p^{-1}(x)$.

Label the coordinates of the points where each graph crosses the coordinate axes.

(b) (i) Find an expression for $p^{-1}(x)$.

(ii) Find an expression for $\frac{1}{9}[p(x) + 16]$.

(iii) What can you deduce about the sequence of transformations given by $\frac{1}{9}[p(x) + 16]$?

[4]

[4]

INVERSE = REFLECTION IN Y = OC

(a) (i) Sketch the graph of y = p(x), where p(x) = 3x - 4.

(ii) On the same set of axes, sketch the graph of $y = p^{-1}(x)$. Label the coordinates of the points where each graph crosses the coordinate $% \left(1\right) =\left(1\right) \left(1\right$ axes.

[4]

[4]

(b) (i) Find an expression for $p^{-1}(x)$.

- (ii) Find an expression for $\frac{1}{9}[p(x) + 16]$.
- (iii) What can you deduce about the sequence of transformations given $% \left(1\right) =\left(1\right) \left(1$ by $\frac{1}{9}[p(x) + 16]$?

LET y=30c-4 REARRANGE y+4=3x

 $P'(x) = \frac{3c+4}{3}$ or $P'(x) = \frac{1}{3}(3c+4)$

 $\frac{1}{9}\left[P(x)+16\right] = P^{-1}(x)$

The equation y = f(x), where $f(x) = (x - a)^2$, with a > 1, is shown below.

The points A and B are the points where the graph intercepts the coordinate axes.

(a) Write down, in terms of a, the coordinates of A and B.

(b) Sketch the graph of y = -f(-x), labelling the images of the points A and B and stating their coordinates in terms of α .

[3]

(c) Write down the value of a such that the point A is three times as far from the origin as the point B.

[1]

a) BOTH POINTS ON AXES SO $y = 0 \quad \text{OR} \quad x = 0$ $A \quad x = 0 \quad f(x) = (0 - \alpha)^{2}$ $(-\alpha)^{2}$ $y = \alpha^{2}$

 $A = (0, \alpha^2)$ y = 0 $0 = (x - \alpha)^2$

oc = a

B=(a,0)

[2]

[3]

[1]

The equation y = f(x), where $f(x) = (x - a)^2$, with a > 1, is shown below.

The points A and B are the points where the graph intercepts the coordinate axes.

- (a) Write down, in terms of a, the coordinates of A and B.
- (b) Sketch the graph of y=-f(-x), labelling the images of the points A and B and stating their coordinates in terms of a.
- (c) Write down the value of a such that the point A is three times as far from the origin as the point B.

b) f(-x) REFLECT IN x = -f(x) REFLECT IN x = -f(x)

The equation y = f(x), where $f(x) = (x - a)^2$, with a > 1, is shown below.

The points A and B are the points where the graph intercepts the coordinate axes.

- (a) Write down, in terms of a, the coordinates of A and B.
- (b) Sketch the graph of y=-f(-x), labelling the images of the points A and B and stating their coordinates in terms of a.
- (c) Write down the value of a such that the point A is three times as far from the origin as the point B.

C) BOTH ON AXES SO HORIZONTAL AND VERTICAL DISTANCES FROM ORIGIN

$$A = 3B$$

$$(0, a^{2}) = (a, 0)$$

$$a^{2} = 3a$$

$$a = 3$$

[2]

[3]

[1]

The function f(x) is to be transformed by a sequence of functions, in the order detailed below:

- 1. A horizontal stretch by scale factor 2
- 2. A reflection in the x-axis
- 3. A translation by $\binom{0}{2}$

Write down an expression for the combined transformation in terms of f(x).

1. HORIZOWTAL = INSIDE BRACKETS

(SCALE FACTOR =
$$\frac{1}{\alpha}$$
)

STRETCH = MULTIPLY

$$f\left(\frac{1}{2}x\right)$$
2. VERTICAL REFLECTION = OUTSIDE

$$-f\left(\frac{1}{2}x\right)$$
3. VERTICAL TRANSLATION = OUTSIDE

$$-f\left(\frac{1}{2}x\right) + 2$$

$$2 - f\left(\frac{1}{2}x\right)$$

[2]

[2]

Question 12

The diagram shows the graph of y = f(t), where $f(t) = \sin 2t$, $0^{\circ} \le x \le 180^{\circ}$.

- (a) (i) Write down the maximum value of y when y = 3f(t).
- (ii) Write down the first value of t for which this maximum occurs.
- (b) (i) Write down the minimum value of y when $y = 5f(t + 30^{\circ})$.
 - (ii) Write down the first value of t for which this minimum occurs.
- (c) Find, in terms of f(t), the combination of transformations that would map the graph of y = f(t) onto the graph of $y = 2 + \sin t$, $0^{\circ} \le x \le 180^{\circ}$.

NERTICAL STRETCH SF 3

MAX OF SIW 2t = 1

VERTICAL STRETCH WON'T AFFECT
HORIZOWTAL VALUE

The diagram shows the graph of y = f(t), where $f(t) = \sin 2t$, $0^{\circ} \le x \le 180^{\circ}$.

- (a) (i) Write down the maximum value of y when y = 3f(t).
 - (ii) Write down the first value of t for which this maximum occurs.
- (b) (i) Write down the minimum value of y when $y = 5f(t + 30^{\circ})$.
- (ii) Write down the first value of t for which this minimum occurs.
- (c) Find, in terms of f(t), the combination of transformations that would map the graph of y = f(t) onto the graph of $y = 2 + \sin t$, $0^{\circ} \le x \le 180^{\circ}$.

b) TRANSLATION (-30) ONLY AFFECTS &
VERTICAL STRETCH SFS ONLY AFFECTS Y

i) MIN
$$SIN2t = -1$$

MIN $5(SIN2t + 30) = -5$
 $y = -5$

11) TRANSLATION (-30)

[2]

The diagram shows the graph of y = f(t), where $f(t) = \sin 2t$, $0^{\circ} \le x \le 180^{\circ}$.

(a) (i) Write down the maximum value of y when y = 3f(t).

(ii) Write down the first value of t for which this maximum occurs.

[2]

(b) (i) Write down the minimum value of y when $y = 5f(t + 30^\circ)$.

(ii) Write down the first value of t for which this minimum occurs.

[2]

(c) Find, in terms of f(t), the combination of transformations that would map the graph of y=f(t) onto the graph of $y=2+\sin t$, $0^{\circ} \le x \le 180^{\circ}$.

[2]

c)

$$f(t) = Siw 2t$$

$$f(\frac{1}{2}t) = Sint$$

$$f(\frac{1}{2}t)+2 = 2+sint$$

Question 13

Let $f(x) = 3x^2 + 18x + 27$.

(a) Write down the value of f(-3).

The function f can be written in the form of $f(x) = a(x - h)^2 + k$.

(b) Find the values of a, h and k.

The graph of g is obtained from the graph of f by a reflection in the x-axis followed by a translation by the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(c) Find g(x), giving your answer in the form of $g(x) = rx^2 + sx + t$.

a) SUBIN DC=-3

$$3(-3)^2 + 18(-3) + 27$$

$$f(-3) = 0$$

[4]

[1]

[3]

[1]

[3]

[4]

Let $f(x) = 3x^2 + 18x + 27$.

(a) Write down the value of f(-3).

The function f can be written in the form of $f(x) = a(x-h)^2 + k$.

(b) Find the values of a, h and k.

The graph of g is obtained from the graph of f by a reflection in the x-axis followed by a translation by the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(c) Find g(x), giving your answer in the form of $g(x) = rx^2 + sx + t$.

b) FACTORISE 3 FROM
$$\infty$$
 TERMS
$$f(x) = 3(\infty^2 + 6x) + 27$$
COMPLETE THE SQUARE ON $\infty^2 + 6\infty$

$$f(x) = 3 \left[(x+3)^2 - 3^2 \right] + 27$$
$$f(x) = 3 \left[(x+3)^2 - 9 \right] + 27$$

EXPAND AND SIMPLIFY INTO FORM a(x-h)2+K

$$f(x) = 3(x+3)^2 - 27 + 27$$

$$f(x) = 3(x+3)^2$$

ALTERNATE METHOD EXPAND a (x-h)2+k $a(x-h)^2+k = ax^2-2ahx+ah^2+k$ COMPARE COEFFICIENTS TO 3002 + 1800 +27

$$aoc^{2} = 3x^{2} \Rightarrow a=3$$

$$-2ahx = 18oc \Rightarrow -2(3)h = 18 \Rightarrow h=-3$$

$$ah^{2}+k=27 \Rightarrow 3(-3)^{2}+k=27 \Rightarrow k=0$$

Let $f(x) = 3x^2 + 18x + 27$.

(a) Write down the value of f(-3).

The function f can be written in the form of $f(x) = a(x - h)^2 + k$.

(b) Find the values of a, h and k.

The graph of g is obtained from the graph of f by a reflection in the x-axis followed by a translation by the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c) Find g(x), giving your answer in the form of $g(x) = rx^2 + sx + t$.

c) REFLECTION OF
$$f(x)$$
 IN $x - Axis : -f(x)$

TRANSLATION BY $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$: $-f(x) + 1$

$$g(x) = -f(x) + 1$$

$$g(x) = -\left[3x^2 + 18x + 27\right] + 1$$

$$= -3x^2 - 18x - 27 + 1$$

$$g(x) = -3x^2 - 18x - 26$$

[4]

The graph of f is shown below. The points A(-2, 10) and B(4, -10) lie on the curve.

(a) Sketch the graph of:

- (i) y = f(2x 1),
- (ii) y = f(4 x),

Clearly indicate the new coordinates of the images of the points A and B.

(a) (i) Translation (1,0) followed by horizontal stretch of factor 1/2

(ii) Translation of (-3,0) followed by reflection in the y-axis

Question 15

Describe a sequence of transformations that map the graph of $y = \ln x$ onto the graph of $y = 5 + \ln \left(\frac{1}{2}x + 4\right)$.

[7]

$$\ln x \rightarrow 5 + \ln \left(\frac{1}{2} x + 4 \right)$$

$$f(x) \rightarrow f(\frac{1}{2}x+4)+5$$

Translation of $\begin{pmatrix} -4\\ 5 \end{pmatrix}$ followed by horizontal stretch of factor 2

OR

Horizontal stretch of factor 2 followed by translation (-8)

[3]

[4]

Question 16

The function f is defined by

$$f(x) = \begin{cases} ax + 1 & \text{if } x \le 7, \\ x^2 - 2x + 1 & \text{if } x > 7. \end{cases}$$

(a) Find the value of a such that the graph of f is continuous at x = 7.

The graph of the function g is obtained by translating the graph of f by the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, followed by a reflection in the x-axis.

(b) Find g(x).

(a) f(7) must have the same value for both parts of the piecewise function if it is to be continuous at x=7

$$a(7) + 1 = (7)^2 - 2(7) + 1$$

$$7a = 35$$

The function f is defined by

$$f(x) = \begin{cases} ax + 1 & \text{if } x \le 7, \\ x^2 - 2x + 1 & \text{if } x > 7. \end{cases}$$

(a) Find the value of a such that the graph of f is continuous at x = 7.

The graph of the function g is obtained by translating the graph of f by the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, followed by a reflection in the x-axis.

(b) Find g(x).

[4]

(b) Translation of
$$f(x)$$
 by $\binom{1}{-1}$

$$f(x) \rightarrow f(x-1)-1 \qquad \text{Now 8 because of the translation}$$

$$f(x-1)-1 = \begin{cases} 5(x-1)+1-1 & x \leq 8 \\ (x-1)^2-2(x-1)+1-1 & x > 8 \end{cases}$$

$$f(x-1)-1 = \begin{cases} 5x-5 & x \leq 8 \\ x^2-4x+3 & x > 8 \end{cases}$$

Reflection in the x-axis $f(x-1)-1 \rightarrow -(f(x-1)-1)$

$$g(x) = \begin{cases} -(5x-5) & x \le 8 \\ -(x^2-4x+3) & x > 8 \end{cases}$$

$$g(x) = \begin{cases} 5-5x & x \leq 8 \\ -x^2 + 4x - 3 & x > 8 \end{cases}$$

Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = \frac{x+1}{x-2}$.

Explain fully, the transformations of the graph of f to obtain the graph of g.

Rewrite g(x) so that x appears just in the denominator

$$x+1 = (x-2) + 3$$

$$\Rightarrow \frac{x+1}{x-2} = \frac{(x-2)+3}{x-2}$$

$$= \frac{x-2}{x-2} + \frac{3}{x-2}$$

$$= 1 + \frac{3}{x-2}$$

$$\Rightarrow f(x) \Rightarrow g(x)$$

$$\frac{1}{x} \Rightarrow 1 + \frac{3}{x-2}$$

Translation of $\binom{2}{0}$, then a stretch with SF=3 in y direction followed by a translation $\binom{0}{0}$