

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

34 Minutes

OCR AS & A LEVEL

/28

Topic Questions

Module 6: Organic chemistry and analysis

%

www.exampaperspractice.co.uk

1. Synthetic polyamides, such as nylon, contain the same link as polypeptides. Nylon is the general name for a family of polyamides.

A short section of a nylon polymer is shown below.

Draw the structures of **two** monomers that could be used to make this nylon.

[Total 2 marks]

2. Short sections of the molecular structures of two polymers are shown below.

polymer C

polymer D

(a) (i) Circle, on the diagrams above, the simplest repeat unit in each polymer.

[2]

(ii) In the boxes below, draw the displayed formulae of the two monomers that could be used to prepare polymer **D**.

[2]

(b) Chemists have developed degradable polymers to reduce the quantity of plastic waste being disposed of in landfill sites. Polymer **D** is more likely to be a 'degradable polymer' than polymer **C**.

Suggest two reasons why.	

[2]

[Total 6 marks]

3. Nylon is sometimes used for electrical insulation. However, if there is a risk of high temperatures then a polymer such as Nomex[®], with a higher melting point, is used.

The repeat unit of Nomex[®] is shown below.

(i)	Draw the structures of two	n monomers tha	at could be	used to form	Nomex [®]
١	' <i>'</i>	Diaw the structures of two		at Could be	used to lotti	I INDITION .

[2]

(ii)	Suggest a reason why the melting point of Nomex® is higher than that of nylon.			

[1] [Total 3 marks]

- **4.** The fibres used in carpets are made from synthetic or natural polymers such as nylon-6,6, *Orlon*TM and wool.
 - (a) Complete the table below.

	nylo-6,6	Orlon [™]
monomer(s)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$H_2N \longrightarrow (CH_2)_6 \longrightarrow NH_2$	
repeat unit of the polymer		H CN H H
type of polymerisation		

(b) Nylon-6,6 can be made from its monomers in the laboratory in two stages as shown below.

(i)	State a suitable reagent to carry out stage 1 .

(ii) Deduce the inorganic product that is also formed in **stage 2**.

(c) Industrially, nylon-6,6 is **not** manufactured by the method in (b). Instead, the two monomers are mixed directly at room temperature to give a salt. This salt is then heated to convert it to nylon-6.6.

Suggest the structures of the two ions present in this salt.

[1]

[1]

(d) Wool is a protein. It is a natural polymer made by the same type of polymerisation as nylon-6,6.

A section of the polymer chain in a protein is shown below.

(i) How many monomer units does this section contain?

.....

[1]

(ii) Draw the structure of **one** of the monomer molecules that was used to form this section.

[1]

	((iii)	State three ways in which the monomer units of a protein differ from of nylon-6,6.	ı those
				••••
				[3]
				[Total 13 marks]
5.	Poly(p	heny	ylethene) is one of the most versatile and successful polymers.	
	The 3- diagra		celetal formula of a section of atactic poly(phenylethene) is shown in telow.	:he
	(i) \$	State	e the type of polymerisation used to make poly(phenylethene).	
			a skeletal or displayed formula to show the monomer used to make phenylethene).	• •

ot	Outline how the polymer is formed from the monomer molecules. (You do no need to give any details of the catalyst or conditions involved.)	iii)
[2]		
Total 4 marks]	Γ	