

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

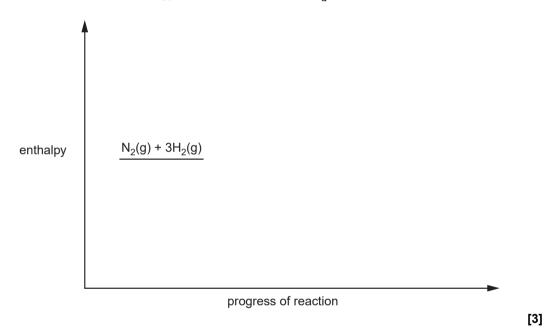
OCR AS & A LEVEL

Topic Questions

Module 3: Periodic table and energy

www.exampaperspractice.co.uk

- 1 The uses of catalysts have great economic and environmental importance. For example, catalysts are used in ammonia production and in catalytic converters.
 - (a) Nitrogen and hydrogen react together in the production of ammonia, NH₃.


$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

The activation energy for the forward reaction, E_a , is +250 kJ mol⁻¹.

(i) Complete the enthalpy profile diagram for this reaction between nitrogen and hydrogen.

Include the

- products
- enthalpy change of reaction, ΔH
- activation energy for the forward reaction, E_a.

(ii) What is the value of the enthalpy change of formation of ammonia?

answer =kJ mol⁻¹ [1]

(iii) The reaction between nitrogen and hydrogen can be catalysed.

Suggest a possible value for the activation energy of the **catalysed** forward reaction.

answer = kJ mol⁻¹ [1]

(iv) What is the value of the activation energy for the uncatalysed reverse reaction (the decomposition of ammonia into nitrogen and hydrogen)?

answer = kJ mol⁻¹ [1]

(b)	In a	catalytic converter, nitrogen monoxide reacts with carbon monoxide.
	(i)	Write the equation for this reaction.
		[1]
	(ii)	Outline the stages that allow nitrogen monoxide and carbon monoxide to react in a catalytic converter.
		[3]
(c)	Scie	entists monitor pollutant gases in the atmosphere.
	(i)	State two modern analytical techniques that scientists can use to monitor environmenta pollution.
		[2]
	(ii)	Explain why it is important to establish international cooperation to reduce pollution levels.
		[1]

(d) In the stratosphere, nitrogen monoxide, NO, is linked with ozone depletion.

Complete the equations below that describe how NO contributes to ozone depletion.

step 1 NO +
$$O_3$$
 \longrightarrow +

step 2
$$NO_2$$
 + \rightarrow NO +

overall +
$$\rightarrow$$
 20₂

[3]

(e) Hess' law can be used to calculate enthalpy changes of reaction.

The equation for the reaction that gives the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g) is as follows.

$$N_2(g) + \frac{1}{2}O_2(g) \rightarrow N_2O(g)$$

(i) It is not possible to measure the enthalpy change of formation of $N_2O(g)$ directly.

Suggest why it is **not** possible.

.....

(ii) The data below can be used to calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g).

reaction	enthalpy change of reaction /kJ mol ⁻¹
$C(s) + N_2O(g) \rightarrow CO(g) + N_2(g)$	-193
$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$	-111

Calculate ΔH_f for $N_2O(g)$.

$$\Delta H_{\rm f}$$
 = kJ mol⁻¹ [2]

[Total: 19]

- 2 Methane and ethane are important fuels.
 - (a) Methane could be manufactured by the reaction between carbon dioxide and hydrogen.

$$CO_2(g) + 4H_2(g) \rightarrow CH_4(g) + 2H_2O(g)$$

Using the table of bond enthalpies, calculate the enthalpy change of reaction for this manufacture of methane.

bond	average bond enthalpy /kJ mol ⁻¹
C–H	+415
H–H	+436
C=O	+805
O–H	+464

enthalpy change of reaction = kJ mol⁻¹ [3]

(b) Methane is a greenhouse gas. Scientists are concerned that the concentration the atmosphere is slowly increasing.				
	(i)	Explain how atmospheric methane molecules can contribute to global warming.		
		[2]		
	(ii)	One way that scientists hope to minimise global warming is by developing Carbon Capture and Storage, CCS, techniques.		
		Describe two of these CCS techniques.		
		[2]		

- **(c)** Ethane reacts with bromine in the presence of ultraviolet radiation to form many organic products.
 - (i) Two of these products are bromoethane and hydrogen bromide.

Describe the mechanism of the reaction between ethane and bromine that forms bromoethane and hydrogen bromide.

Include in your answer

- · the type of bond fission that occurs
- · equations for each step of the reaction
- the name of each step of the reaction.

	Your answer needs to be clear and well organised using the correct terminology.
	[7]
(ii)	Give two reasons why there are many organic products of the reaction between bromine and ethane.
	[2]
	[Total: 16]

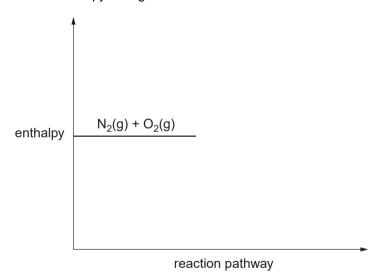
	(i)				
		Write the equati	on for the aerobic re	espiration of C ₆ H ₁₂ C	6.
					[1]
(ii)	Explain, in terms	s of bond breaking a	and bond forming, w	hy this reaction is exothermic.
					[2]
n) -	The	table shows som	ne enthalpy changes		
-,		table eneme con	.o onunanpy onangos	or compaction, Arr	;
			substance	∆ <i>H</i> _c / kJ mol ⁻¹	
			C(s)	-394	_
			H ₂ (g)	-286	
			$C_6H_{12O_6(s)}$	-2801	
	(i)	Mhat is maant b	witho torm anthalaw	change of combust	ion AU 2

(ii)	The enthalpy change of formation, $\Delta H_{\rm f}$, of glucose, ${\rm C_6H_{12}O_6}$, cannot be determined directly. The equation for this enthalpy change is shown below.
	$6C(s) + 6H_2(g) + 3O_2(g) \rightarrow C_6H_{12}O_6(s)$
	Suggest why the enthalpy change of formation of $\mathrm{C_6H_{12}O_6}$ cannot be determined directly.
	[1]
(iii)	Use the $\Delta H_{\rm c}$ values in the table to calculate the enthalpy change of formation of ${\rm C_6H_{12}O_6}.$
	$\Delta H_{\rm f} = \dots kJ \; {\rm mol}^{-1} \; [3]$
	[Total: 9

4	Nitrogen monoxide is an atmospheric pollutant, formed inside car engines by the reaction between
	nitrogen and oxygen.

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
 $\Delta H = +66 \text{ kJ mol}^{-1}$

This reaction is endothermic.


(a)	(i)	Explain the	meaning	of the term	endothermic

(ii) What is the value for the enthalpy change of formation of nitrogen monoxide?

answer = kJ mol⁻¹ [1]

[3]

- (b) (i) Complete the enthalpy profile diagram for the reaction between nitrogen and oxygen.On your diagram
 - add the product
 - label the activation energy as E_a
 - label the enthalpy change as ΔH .

(ii) Explain the meaning of the term activation energy.

(c)	A research chemist investigates the reaction between nitrogen and oxygen. She mixes nitrogen and oxygen gases in a sealed container. She then heats the container at a constant temperature for one day until the gases react dynamic equilibrium.			
	(i)	Explain, in terms of the rate of the forward reaction and the rate of the backward reaction, how the mixture of $N_2(g)$ and $N_2(g)$ reaches a dynamic equilibrium containing $N_2(g)$, $N_2(g)$ and $NO(g)$.		
		[2]		
	(ii)	The research chemist repeats the experiment at the same temperature using the same initial amounts of $N_2(g)$ and $O_2(g)$. This time she carries out the experiment at a much higher pressure .		
		Suggest why		
		 much less time is needed to reach dynamic equilibrium the composition of the equilibrium mixture is the same as in the first experiment. 		
	(iii)	The reaction between nitrogen and oxygen in a car engine does not reach a dynamic equilibrium.		
		Suggest why not.		

(d)	Nitr	ogen monoxide is a radical.
	Wha	at does this tell you about a molecule of nitrogen monoxide?
		[1]
(e)	Oxi	des of nitrogen, NO _x , are atmospheric pollutants.
	(i)	Nitrogen monoxide reacts with oxygen to form NO ₂ .
		Write an equation for the formation of NO_2 from nitrogen monoxide and oxygen.
		[1]
	(ii)	Aeroplane engines produce nitrogen monoxide.
		Describe, with the aid of equations, how nitrogen monoxide catalyses ozone depletion in the stratosphere.
		[3]
	(iii)	Outline the use of infrared spectroscopy in identifying air pollutants such as NO_x .
		[2]

[Total: 21]

5	An i	important reaction in the manufacture of nitric acid is the catalytic oxidation of ammonia.
		$4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$ $\Delta H = -909 \text{ kJ mol}^{-1}$
	(a)	Low pressures and low temperatures would give the maximum equilibrium yield of NO.
		Explain why.
		[2]
	(b)	The actual conditions used in the catalytic oxidation of ammonia include 900 °C and an increase in pressure.
		Suggest why these conditions are a compromise.
		[3]
	(c)	A factory makes 2.50×10^5 mol of NO a day.
		(i) How much energy is released every day?
		energy released = kJ [1]
		(ii) Suggest how this energy can be used to reduce the cost of making NO.
		[1]
		[Total: 7]