

1	(a)	(i)	A ray of light passes through a length of curved optical fibre.	
			Draw a diagram showing the fibre and the path of the ray of light.	
				[1]
		(ii)	Describe one use of optical fibres in medicine. You may draw a diagram.	
				[3]
				_

(b) Draw a straight line from each wave on the left to the most appropriate speed.

 $90\,\mathrm{m/s}$ (9×10) 6000 m/s light in air (6×10^3) 100000m/s (1×10^5) microwaves in a vacuum 1000000m/s (1×10^6) 3000000m/s sound in steel (3×10^8) 600000000m/s (6×10^{10}) [3]

(c) The refractive index of a block of glass is 1.5.

Use your value for the speed of light from **(b)** to calculate the speed of light in this block.

[Total: 9]

2 (a) Explain what is meant by

(ii)

(i) to	otal i	nternal	refle	ction
--------	--------	---------	-------	-------

	 	 [1]
critical angle.		

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is $3.0 \times 10^8 \, \text{m/s}$. Its speed in the glass is $2.0 \times 10^8 \, \text{m/s}$. Calculate the refractive index of the glass.

refractive index =[2]

(ii)	Show that the critical angle for the glass-air boundary is 42°.	
(iii)	[1 On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.	e }]

3 (a) Fig. 7.1 represents an object O placed in front of a converging lens.

Fig. 7.1

(i) State a full description of the image I.

[2]

(ii) Using the letters on Fig. 7.1, identify the focal length of the lens.

(iii) On Fig. 7.1, draw an eye suitably placed to view the image I. [1]

(b) Fig. 7.2 shows an object O placed to the left of a converging lens. A principal focus of the lens is at the position marked F.

Fig. 7.2

- (i) On Fig. 7.2, draw two rays to locate the image of object O. Draw the image.
- (ii) On Fig. 7.2, draw one other ray from the upper tip of O to the image.

[4]

[Total: 8]

4	The	refractive	index	n of gla	ss in	air is	15

(a)	(i)	State the equation that relates the speed of light in air v_a , the speed of light in glass and n .	v g
-----	-----	---	------------

.....[1]

(ii) The speed of light in air is $3.0 \times 10^8 \text{m/s}$.

Calculate the speed of light in glass.

speed =[1]

(b) Light travelling in glass strikes the edge of the glass. Fig. 6.1 shows a ray of light at an angle of 41° to the normal.

Fig. 6.1

(i) The light passes from the glass into the air.

Calculate the angle that the ray makes with the normal in the air.

angle =[2]

(ii) State what happens to light that strikes the edge of the glass at an angle to the normal much larger than 41°.

.....[1]

(c)	Describe one example of how optical fibres are used in medicine.
	[2]
	[Total: 7]

- **5** A glass, converging lens is used as a magnifying glass to observe a red ant.
 - (a) Fig. 6.1 shows the lens, the principal axis, and the two principal focuses F_1 and F_2 .

Fig. 6.1

- (i) 1. On Fig. 6.1, mark a point on the principal axis, labelled A, to indicate a suitable position for the ant.
 - **2.** On Fig. 6.1, mark a point on the principal axis, labelled E, to indicate a suitable position for the observer's eye.

[1]

(ii) Tick **one** of the boxes to indicate where, on the principal axis, the image of the ant is located.

to the left of F_1 between F_1 and the lens
within the lens
between the lens and F_2 to the right of F_2

[1]

(iii) Underline **two** words in the list that describe the image produced by the magnifying glass.

diminished inverted real upright virtual [2]

) (i) The red light from the ant passes into the lens.
As the light enters the lens, state what happens to
1. its wavelength,
[1
2. its frequency.
[1
(ii) State how the wavelength of violet light in air differs from the wavelength of red light i air.
[1
[Total: 7

6 (a) Fig. 7.1 shows a convex lens being used to produce an image of an object.

Fig. 7.1

(i) Place three ticks in the table that describe this image.

can only be formed on a screen	
diminished	
enlarged	
inverted	
real	
same size	
upright	
virtual	

[3]

(ii) On Fig. 7.1, mark a letter E to indicate a possible position for an eye to be placed to observe this image. [1]

(iii) State an application in which a convex lens is used in this way.

.....[1]

(b)	In the space below, draw a ray diagram to locate the image of an object of height 1.0 cm
	placed 5.0 cm from a convex lens of focal length 2.0 cm. Draw your diagram full size. You are
	advised to locate the lens roughly in the centre of the space. Label the image.

[3]

[Total: 8]