

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

51 Minutes

OCR AS & A LEVEL

/43

%

Topic Questions

Module 5: Physical chemistry and transiton elements

www.exampaperspractice.co.uk

1	This	s que	stion looks at properties of transition elements, ions and complexes.	
	(a)	Wha	at is the oxidation number of Cr in the complex ion $[CrOC l_5]^{2-}$?	
			[1]
	(b)	Wri	ite the equation for a reaction catalysed by a named transition element, compound or ion.	
		Equ	ation:	
		Cat	alyst:[1]
	(c)	An	octahedral complex ion A , C ₉ H ₃₀ N ₆ Ni ³⁺ , exists as two optical isomers.	
		In c	omplex ion A , Ni ³⁺ is bonded to three molecules of a bidentate ligand B .	
		(i)	State what is meant by a bidentate ligand.	
			[1]
		(ii)	What is the molecular formula of the bidentate ligand B ?	
			[1]
		(iii)	Draw a possible structure for B and explain how B is able to act as a bidentate ligand.	
			[2	<u>'</u>]
		(iv)	What is the coordination number of complex ion A ?	
			[1	1

(v)	Complete the 3-D diagrams of the shapes of the optical isomers of complex ion A .
	You can show the bidentate ligand simply as
	[
(d)	Describe the reactions of EITHER aqueous copper(II) ions OR aqueous cobalt(II) ions with: aqueous sodium hydroxide excess aqueous ammonia hydrochloric acid.
	In your answer you should link observations with equations.

[Total: 14]

2			s in the d-block of the Periodic Table form ions that combine with ligands to form compl	e
ions. Most d-block elements are also classified as transition elements.				
	(a)	Ехр	lain why two of the Period 4 d-block elements (Sc–Zn) are not also transition elements.	
		In y	our answer you should link full electron configurations to your explanations.	
				6]
	(b)		cobalt(III) ion, ${\rm Co^{3+}}$, forms a complex ion A with two chloride ligands and two nediamine, ${\rm H_2NCH_2CH_2NH_2}$, ligands.	VC
		The	structure of ethanediamine is shown below.	
			H_2N NH_2	
		(i)	Explain how ethanediamine is able to act as a bidentate ligand.	
		(ii)	Write the formula of complex ion A .	2]
			[1]
		(iii)	What is the coordination number of cobalt in complex ion A ?	
			·	11

(iv) Complex ion **A** has *cis* and *trans* stereoisomers. One of these stereoisomers also has an optical isomer.

Draw 3-D diagrams to show the three stereoisomers.

(c)		equilibrium reaction for the transport of oxygen by haemoglobin (Hb) in blood can be resented as equation 5.1 .
		$Hb(aq) + O_2(aq) \rightleftharpoons HbO_2(aq)$ equation 5.1
	(i)	Explain how ligand substitution reactions allow haemoglobin to transport oxygen in blood.
		[2]
	(ii)	Write an expression for the stability constant, $K_{\rm stab}$, for the equilibrium involved in the transport of oxygen by haemoglobin.
		Use the simplified species in equation 5.1 .
		[1]
	(iii)	In the presence of carbon monoxide, less oxygen is transported in the blood.
		Suggest why, in terms of bond strength and stability constants.
		[2]
		[Total: 18]

3 Iron is heated with chlorine to form an orange–brown solid, **A**. Solid **A** is dissolved in water to form an orange–brown solution, **X**, containing the complex ion [Fe(H²O)⁶]³⁺.

Separate portions of solution **X** are reacted as shown in **Experiments 1–4** below.

Experiment 1

Aqueous sodium hydroxide is added to solution **X**. An orange–brown precipitate **B** forms.

Experiment 2

Excess zinc powder is added to solution X and the mixture is heated. The excess zinc is removed leaving a pale-green solution containing the complex ion C and aqueous Zn^{2+} ions.

Experiment 3

An excess of aqueous potassium cyanide, KCN(aq), is added to solution \mathbf{X} . The solution turns a yellow colour and contains the complex ion \mathbf{E} . \mathbf{E} has a molar mass of 211.8 g mol⁻¹.

Experiment 4

An aqueous solution containing ethanedioate ions, $(COO^-)_2$, is added to solution **X**. A coloured solution forms containing a mixture of optical isomers **F** and **G**.

The structure of the ethanedioate ion is shown below.

(a) Write an equation for the formation of solid ${\bf A}$.

			[1]		
(b)	In Experiment 1 , write an ionic equation for the formation of precipitate B .				
			[1]		
(c)	In E	experiment 2,			
	(i)	write an equation for the formation of complex ion C			
			[2]		
	(ii)	state the type of reaction taking place.			
			[41		

(d)	In E	experiment 3,
	(i)	write an equation for the formation of complex ion E
		[2]
	(ii)	state the type of reaction taking place.
		[1]
(e)	In E	experiment 4, optical isomers F and G are formed.
	In y	ow the 3-D shapes of F and G . Four diagrams, show the ligand atoms that are bonded to the metal ions and any overall rges.
		[3]
(f)	oxic	a separate experiment, iron metal is heated with potassium nitrate, ${\sf KNO}_3$, a strong dising agent. A reaction takes place and the resulting mixture is poured into water. A dark solution forms containing ferrate(VI) ions. The ferrate(VI) ion has a 2– charge.
	Sug	gest a possible formula for the ferrate(VI) ion.
		[1]
		[Total: 12]

4 Dimethylglyoxime, DMGH, can be used to analyse nickel(II)

An excess of a solution of DMGH is added to an acidic solution of a nickel(II) compound. Aqueous ammonia is added which precipitates out a nickel(II) complex, Ni(DMG)₂, as a red solid.

A sample of a hydrated nickel(II) salt is analysed using the procedure below.

Step 1

2.50 g of the hydrated nickel(II) salt is dissolved in dilute acid.

An excess of an aqueous solution of DMGH is added.

Step 2

An excess of aqueous ammonia is added and the mixture is heated.

A red precipitate of Ni(DMG)₂ forms.

An equation for the reaction is shown below.

$$Ni^{2+}(aq) + 2DMGH(aq) + 2NH_3(aq) \rightarrow Ni(DMG)_2(s) + 2NH_4^+(aq)$$

red precipitate

Step 3

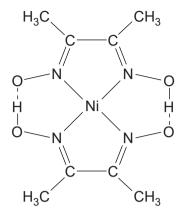
The red precipitate is filtered, washed with water, dried and then weighed.

The precipitate of Ni(DMG)₂ has a mass of 2.57 g.

Assume that all Ni²⁺(aq) ions have been converted into Ni(DMG)₂(s).

 $M[Ni(DMG)_2] = 288.7 \,\mathrm{g}\,\mathrm{mol}^{-1}.$

Step 4


A second 2.50 g sample of the hydrated nickel(II) salt is heated in a crucible to remove the water of crystallisation.

1.38g of the anhydrous salt remains.

(a)	Complete the electron configurations	s of nickel as the element and in the +2 oxidation state.
	nickel as the element:	1s ² 2s ² 2p ⁶
	nickel in the +2 oxidation state:	1s ² 2s ² 2p ⁶

(b) The structure of $\operatorname{Ni}(\operatorname{DMG})_2$ is shown below.

(1)	State and explain the role of animonia in Step 2 of this experiment.
	[1]
(ii)	State the coordination number of Ni in Ni(DMG) ₂ .
	[1]
(iii)	Why does the Ni(DMG) ₂ complex have no overall charge?
	[1]
(iv)	Draw the structure of dimethylglyoxime, DMGH.

(c)	Determine a possible formula of the hydrated nickel(II) salt.
	Your answer must show relevant working.

[7]

[Total: 13]