Boost your performance and confidence with these topic-based exam questions Practice questions created by actual examiners and assessment experts Detailed mark scheme Suitable for all boards Designed to test your ability and thoroughly prepare you # **CHEMISTRY** 51 Minutes ## OCR AS & A LEVEL /43 % **Topic Questions** Module 5: Physical chemistry and transiton elements ### www.exampaperspractice.co.uk | 1 | This | s que | stion looks at properties of transition elements, ions and complexes. | | |---|------|-------|---|------------| | | (a) | Wha | at is the oxidation number of Cr in the complex ion $[CrOC l_5]^{2-}$? | | | | | | [1 |] | | | (b) | Wri | ite the equation for a reaction catalysed by a named transition element, compound or ion. | | | | | Equ | ation: | | | | | Cat | alyst:[1 |] | | | (c) | An | octahedral complex ion A , C ₉ H ₃₀ N ₆ Ni ³⁺ , exists as two optical isomers. | | | | | In c | omplex ion A , Ni ³⁺ is bonded to three molecules of a bidentate ligand B . | | | | | (i) | State what is meant by a bidentate ligand. | | | | | | | | | | | | | | | | | | [1 |] | | | | (ii) | What is the molecular formula of the bidentate ligand B ? | | | | | | [1 |] | | | | (iii) | Draw a possible structure for B and explain how B is able to act as a bidentate ligand. | [2 | <u>'</u>] | | | | (iv) | What is the coordination number of complex ion A ? | | | | | | [1 | 1 | | (v) | Complete the 3-D diagrams of the shapes of the optical isomers of complex ion A . | |-----|--| | | You can show the bidentate ligand simply as | | | [| | (d) | Describe the reactions of EITHER aqueous copper(II) ions OR aqueous cobalt(II) ions with: aqueous sodium hydroxide excess aqueous ammonia hydrochloric acid. | | | In your answer you should link observations with equations. | [Total: 14] | 2 | | | s in the d-block of the Periodic Table form ions that combine with ligands to form compl | e | |---|-----|-------|--|----| | ions. Most d-block elements are also classified as transition elements. | | | | | | | (a) | Ехр | lain why two of the Period 4 d-block elements (Sc–Zn) are not also transition elements. | | | | | In y | our answer you should link full electron configurations to your explanations. | 6] | | | (b) | | cobalt(III) ion, ${\rm Co^{3+}}$, forms a complex ion A with two chloride ligands and two nediamine, ${\rm H_2NCH_2CH_2NH_2}$, ligands. | VC | | | | The | structure of ethanediamine is shown below. | | | | | | H_2N NH_2 | | | | | (i) | Explain how ethanediamine is able to act as a bidentate ligand. | | | | | | | | | | | (ii) | Write the formula of complex ion A . | 2] | | | | | [| 1] | | | | (iii) | What is the coordination number of cobalt in complex ion A ? | | | | | | · | 11 | (iv) Complex ion **A** has *cis* and *trans* stereoisomers. One of these stereoisomers also has an optical isomer. Draw 3-D diagrams to show the three stereoisomers. | (c) | | equilibrium reaction for the transport of oxygen by haemoglobin (Hb) in blood can be resented as equation 5.1 . | |-----|-------|--| | | | $Hb(aq) + O_2(aq) \rightleftharpoons HbO_2(aq)$ equation 5.1 | | | (i) | Explain how ligand substitution reactions allow haemoglobin to transport oxygen in blood. | | | | | | | | | | | | [2] | | | (ii) | Write an expression for the stability constant, $K_{\rm stab}$, for the equilibrium involved in the transport of oxygen by haemoglobin. | | | | Use the simplified species in equation 5.1 . | | | | | | | | | | | | | | | | [1] | | | (iii) | In the presence of carbon monoxide, less oxygen is transported in the blood. | | | | Suggest why, in terms of bond strength and stability constants. | | | | | | | | | | | | | | | | [2] | | | | [Total: 18] | 3 Iron is heated with chlorine to form an orange–brown solid, **A**. Solid **A** is dissolved in water to form an orange–brown solution, **X**, containing the complex ion [Fe(H²O)⁶]³⁺. Separate portions of solution **X** are reacted as shown in **Experiments 1–4** below. #### **Experiment 1** Aqueous sodium hydroxide is added to solution **X**. An orange–brown precipitate **B** forms. #### **Experiment 2** Excess zinc powder is added to solution X and the mixture is heated. The excess zinc is removed leaving a pale-green solution containing the complex ion C and aqueous Zn^{2+} ions. #### **Experiment 3** An excess of aqueous potassium cyanide, KCN(aq), is added to solution \mathbf{X} . The solution turns a yellow colour and contains the complex ion \mathbf{E} . \mathbf{E} has a molar mass of 211.8 g mol⁻¹. #### **Experiment 4** An aqueous solution containing ethanedioate ions, $(COO^-)_2$, is added to solution **X**. A coloured solution forms containing a mixture of optical isomers **F** and **G**. The structure of the ethanedioate ion is shown below. (a) Write an equation for the formation of solid ${\bf A}$. | | | | [1] | | | |-----|--|---|-----|--|--| | (b) | In Experiment 1 , write an ionic equation for the formation of precipitate B . | | | | | | | | | [1] | | | | (c) | In E | experiment 2, | | | | | | (i) | write an equation for the formation of complex ion C | | | | | | | | [2] | | | | | (ii) | state the type of reaction taking place. | | | | | | | | [41 | | | | (d) | In E | experiment 3, | |--------------|------|---| | | (i) | write an equation for the formation of complex ion E | | | | [2] | | | (ii) | state the type of reaction taking place. | | | | [1] | | (e) | In E | experiment 4, optical isomers F and G are formed. | | | In y | ow the 3-D shapes of F and G . Four diagrams, show the ligand atoms that are bonded to the metal ions and any overall rges. | [3] | | (f) | oxic | a separate experiment, iron metal is heated with potassium nitrate, ${\sf KNO}_3$, a strong dising agent. A reaction takes place and the resulting mixture is poured into water. A dark solution forms containing ferrate(VI) ions. The ferrate(VI) ion has a 2– charge. | | | Sug | gest a possible formula for the ferrate(VI) ion. | | | | [1] | | | | [Total: 12] | 4 Dimethylglyoxime, DMGH, can be used to analyse nickel(II) An excess of a solution of DMGH is added to an acidic solution of a nickel(II) compound. Aqueous ammonia is added which precipitates out a nickel(II) complex, Ni(DMG)₂, as a red solid. A sample of a hydrated nickel(II) salt is analysed using the procedure below. #### Step 1 2.50 g of the hydrated nickel(II) salt is dissolved in dilute acid. An excess of an aqueous solution of DMGH is added. #### Step 2 An excess of aqueous ammonia is added and the mixture is heated. A red precipitate of Ni(DMG)₂ forms. An equation for the reaction is shown below. $$Ni^{2+}(aq) + 2DMGH(aq) + 2NH_3(aq) \rightarrow Ni(DMG)_2(s) + 2NH_4^+(aq)$$ red precipitate #### Step 3 The red precipitate is filtered, washed with water, dried and then weighed. The precipitate of Ni(DMG)₂ has a mass of 2.57 g. Assume that all Ni²⁺(aq) ions have been converted into Ni(DMG)₂(s). $M[Ni(DMG)_2] = 288.7 \,\mathrm{g}\,\mathrm{mol}^{-1}.$ #### Step 4 A second 2.50 g sample of the hydrated nickel(II) salt is heated in a crucible to remove the water of crystallisation. 1.38g of the anhydrous salt remains. | (a) | Complete the electron configurations | s of nickel as the element and in the +2 oxidation state. | |-----|--------------------------------------|---| | | nickel as the element: | 1s ² 2s ² 2p ⁶ | | | nickel in the +2 oxidation state: | 1s ² 2s ² 2p ⁶ | (b) The structure of $\operatorname{Ni}(\operatorname{DMG})_2$ is shown below. | (1) | State and explain the role of animonia in Step 2 of this experiment. | |-------|---| | | | | | [1] | | (ii) | State the coordination number of Ni in Ni(DMG) ₂ . | | | [1] | | (iii) | Why does the Ni(DMG) ₂ complex have no overall charge? | | | [1] | | (iv) | Draw the structure of dimethylglyoxime, DMGH. | | (c) | Determine a possible formula of the hydrated nickel(II) salt. | |-----|---| | | Your answer must show relevant working. | [7] [Total: 13]