

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **54 Minutes**

2002

Score /45 Percentage

%

Physics

Topic Questions

AQA AS & A LEVEL

3.5 Electricity

www.exampaperspractice.co.uk

(a) The power P dissipated in a resistor of resistance R is measured for a range of values of the potential difference V across it. The results are shown in the table below.

V / V	$V^{\scriptscriptstyle 2}$ / $\mathrm{V}^{\scriptscriptstyle 2}$	P / W
1.00	1.0	0.21
1.71	2.9	0.58
2.25		1.01
2.67		1.43
3.00	9.0	1.80
3.27	10.7	2.18
3.50	12.3	2.43

- (i) Complete the table above.
- (ii) Complete the graph below by plotting the two remaining points and draw a best fit straight line.
- (iii) Determine the gradient of the graph.

gradient =

(3)

(1)

(2)

(iv) Use the gradient of the graph to obtain a value for R.

R =

For more help please visit our website www.exampaperspractice.co.uk

(b) The following questions are based on the data in the table above.

(i) Determine the value of R when V = 3.50 V.

R =Ω

(1)

(ii) The uncertainty in V is \pm 0.01 V. The uncertainty in P is \pm 0.05 W.

Calculate the percentage uncertainty in the value of R calculated in part (1).

percentage uncertainty = %

(iii) Hence calculate the uncertainty in the value of R.

uncertainty =

(1)

(3)

(iv)	State and explain whether the value of R you calculated in part (1) is consistent with the value of R you determined from the gradient in part (a)(iv).		
		arks)	

A cable used in high-voltage power transmission consists of six aluminium wires surrounding a steel wire. A cross-section is shown below.

The resistance of a length of 1.0 km of the steel wire is 3.3 Ω . The resistance of a length of 1.0 km of **one** of the aluminium wires is 1.1 Ω .

(a) The steel wire has a diameter of 7.4 mm.
Calculate the resistivity of steel. State an appropriate unit.

resistivity = unit

(4)

(b) Explain why only a small percentage of the total current in the cable passes through the steel wire.

For more help please visit our website www.exampaperspractice.co.uk

(c) The potential difference across a length of 1.0 km of the cable is 75 V.Calculate the total power loss for a 1.0 km length of cable.

Total power loss W

(3) (Total 10 marks)

(3)

3 A 'potato cell' is formed by inserting a copper plate and a zinc plate into a potato. The circuit shown in **Figure 1** is used in an investigation to determine the electromotive force and internal resistance of the potato cell.

(a) State what is meant by electromotive force.

(2)

(b) The plotted points on **Figure 2** show the data for current and voltage that were obtained in the investigation.

Figure 2

For more help please visit our website www.exampaperspractice.co.uk

(1)

(ii) The electromotive force (emf) of the potato cell is 0.89 V. Explain why the voltages plotted on Figure 2 are always less than this and why the difference between the emf and the plotted voltage becomes larger with increasing current.

(3)

(3)

(iii) Use **Figure 2** to determine the internal resistance of the potato cell.

internal resistance = Ω

(c) A student decides to use two potato cells in series as a power supply for a light emitting diode (LED). In order for the LED to work as required, it needs a voltage of at least 1.6 V and a current of 20 mA.

Explain whether the LED will work as required.

For more help please visit our website www.exampaperspractice.co.uk

(a) Sketch, on **Figure 1**, the current-voltage (IV) characteristic for a filament lamp for currents up to its working power.

(c) Three identical filament lamps, P, Q and R are connected in the circuit shown in Figure 2.

Figure 2.

The filament in lamp Q melts so that it no longer conducts. Explain why lamp P becomes brighter and lamp R becomes dimmer.

- (d) A filament lamp, \mathbf{X} , is rated at 60 W 230 V. Another type of lamp, \mathbf{Y} , described as 'energy saving' has the same light intensity output but is rated at 11 W 230 V.
 - (i) Calculate the electrical energy converted by each lamp if both are on for 4 hours a day for a period of 30 days.

	electrical energy converted by ${f X}$ =J
	electrical energy converted by ${f Y}$ =J
(ii)	Suggest why the two lamps can have different power ratings but have the same light intensity output.

(2)

(2)

	(2)
(То	(2) tal 10 marks)