

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

Edexcel
AS & A LEVEL

Topic Questions

Paper 1: Advanced Inorganic and Physical Chemistry

www.exampaperspractice.co.uk

The dihydrogenphosphate-hydrogenphosphate ion system is an important buffer in the human body.

$$H_{2}PO_{4}^{-} + H_{2}O \implies HPO_{4}^{2-} + H_{3}O^{+}$$

(a) In this system, there are two acid-base conjugate pairs. These are

(1)

acid with its conjugate base

base with its conjugate acid

- \times A
- $H_2PO_4^- / HPO_4^{2-}$

 H_2O / H_3O^+

- \blacksquare **B** H_2O / H_3O^+

 $HPO_4^{2-} / H_2PO_4^{-}$

- ⊠ C
- H_3O^+ / H_2O

₂PO₄ / HPO₄²⁻

- \boxtimes D
- $H_2PO_4^-/HPO_4^{2-}$

 H_3O^+ / H_2O

(b) A formula that can be used for the calculation of the pH of this buffer solution is

$$pH = pK_a + log \left(\frac{\left[HPO_4^{2-} \right]}{\left[H_2PO_4^{-} \right]} \right)$$

Calculate the pH of this buffer using

$$pK_a = 7.20$$

$$pK_a = 7.20$$
 [HPO₄²⁻] = 3.98 × 10⁻⁸ mol dm⁻³ [H₂PO₄⁻] = 3.89 × 10⁻⁷ mol dm⁻³

$$[H_2PO_4^-] = 3.89 \times 10^{-7} \text{ mol dm}^{-3}$$

(1)

- **■ A** 6.19
- **■ B** 6.21
- **C** 7.20
- **■ D** 8.19

(Total for Question = 2 marks)

2 Calculate the pH of a solution of HCl, of concentration 0.25 mol dm⁻³.

- \boxtimes A -0.60
- \times B 0.25
- X C 0.60
- \times D 1.39

3		the correct pH for each of the following solutions. 10^{-3} nitric acid.	
			(1)
		-2	
	⊠ B	-0.3	
	⊠ C	+0.3	
	■ D	+2	
	(b) 0.1	10 mol dm ⁻³ barium hydroxide, Ba(OH) ₂ . $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$.	(1)
	⊠ A	13.0	
	⊠ B	13.3	
	⊠ C	13.7	
	⊠ D	14.3	
		mixture of 20 cm ³ of 1.0 mol dm ⁻³ hydrochloric acid and 10 cm ³ of 1.0 mol dm ⁻³ dium hydroxide.	(1)
	⊠ A	0	
	⊠ B	0.30	
	⊠ C	0.48	
	⊠ D	7	
		(Total for Question = 3 mar	ks)
	4 Am	monia reacts with water in a reversible reaction. Which are the Brønsted-Lowry	bases?
	\times	A H ₂ O and OH ⁻	
	\times	NH ₃ and OH⁻	
	\boxtimes	C NH ₄ ⁺ and H ₂ O	
	×	NH ₄ ⁺ and NH ₃	
		(Total for Question = 1 r	nark)

5	Suggest the most likely pH for each of the following solutions.
	5.0 mol dm ⁻³ hydrochloric acid.

(a)

- **■ B** +0.7
- **◯ C** −0.7
- **D** −5
- (b) 0. mol dm⁻³ strontium hydroxide, Sr(OH)₃

$$K_{\rm w} = 1.0 \times 10^{-14} \, mol^2 \, dm^{-6}$$

(1)

- **■ B** 13.6
- **C** 14.0
- **■ D** 14.3
- (c) A mixture of 20 cm 3 of 1.0 mol dm $^{-3}$ nitric acid and 10 cm 3 of 1.0 mol dm $^{-3}$ sodium hydroxide.

(1)

- **■ B** 0.30
- D 7

(Total for Question = 3 marks)

6 In liquid ammonia the following equilibrium is present.

$$NH_2^- + NH_4^+ \rightleftharpoons 2NH_3$$

Identify the Brønsted-Lowry base(s).

- \square **A** NH_2^- only
- B NH⁺₄ only
- C NH₂ and NH₃
- **D** NH₄ and NH₃

7		A solution of potassium manganate(VII) was used to determine the concentration of iron(II) ions in solution by titration in the presence of excess dilute sulfuric acid.					
	(a)		th the potassium manganate(VII) in the burette, the end-point of the reaction is nen the solution in the conical flask turns	(1)			
	X	A	colourless.	(1)			
	×	В	pink.				
	X	C	green.				
	X	D	orange.				
	(b)	lfi	nsufficient acid is added, the titre value is	(1)			
A low and a brown precipitate forms.				(1)			
	X	В	low and a green precipitate forms.				
	X	C	high and a brown precipitate forms.				
	X	D	high and a green precipitate forms.				
			(Total for Question = 2 mark	s)			
8 S	ph	eny	e 0.1 mol dm ⁻³ aqueous solutions of ammonia, methylamine and lamine were prepared. Which of the following sequences shows the solutions er of increasing pH?				
	×	A	phenylamine, methylamine, ammonia				
	X	В	phenylamine, ammonia, methylamine				
	X	C	methylamine, ammonia, phenylamine				
	×	D	methylamine, phenylamine, ammonia				
			(Total for Question = 1 mark))			

9	The dissociation constant of water, $K_{\rm w}$, increases with increasing temperature. When the temperature increases, water				
	X	A	remains neutral.		
	X	В	dissociates less.		
	X	C	becomes acidic.		
	X	D	becomes alkaline.		
			(Total for Question = 1 mark)		
1	0 T	he	reaction between concentrated sulfuric acid and pure ethanoic acid is		
			$CH_3COOH + H_2SO_4 \rightleftharpoons CH_3COOH_2^+ + HSO_4^-$		
	Th	ie B	rønsted-Lowry acids in this equilibrium are		
	X	A	CH ₃ COOH and H ₂ SO ₄		
	X	В	CH ₃ COOH ₂ ⁺ and HSO ₄ ⁻		
	X	C	H ₂ SO ₄ and CH ₃ COOH ₂ ⁺		
	X	D	CH ₃ COOH and HSO ₄		
			(Total for Question = 1 mark)		
1			queous solution of ethanoic acid is gradually diluted. Which of the following nents is incorrect ?		
	×	Α	The pH decreases.		
	×	В	The value of K_a is unchanged.		
	×	C	The concentration of ethanoic acid molecules decreases.		
	×	D	The proportion of ethanoic acid molecules which dissociates increases.		
			(Total for Question = 1 mark)		

12	Methyl orange and phenolphthalein are both acid-base indicators. In the titration of a strong acid against a weak alkali				
A methyl orange is a suitable indica		A	methyl orange is a suitable indicator but phenolphthalein is not.		
	X	В	phenolphthalein is a suitable indicator but methyl orange is not.		
both phenolphthalein and methyl orange are suitable indicators.		both phenolphthalein and methyl orange are suitable indicators.			
	X	D	neither phenolphthalein nor methyl orange is a suitable indicator.		
			(Total for Question = 1 mark)		
13	13 Which of the following statements is true about all substances that form acidic solutions in water?				
	X	A	They are corrosive.		
	X	В	They are liquids.		
	X	C	They contain hydrogen atoms.		
	\vee	D	They form H ⁺ (aq) ions.		
		U	They form it (aq) foris.		

- **14** Select the correct pH for each of the following solutions.
 - (a) Nitric acid, HNO₃, of concentration 2 mol dm⁻³, assuming it is fully dissociated.

(1)

- **B** 0.0
- **◯ C** 0.3
- (b) Sodium hydroxide, NaOH, of concentration 2 mol dm⁻³, using $K_{\rm w}=1.0\times10^{-14}\,{\rm mol^2~dm^{-6}}$

(1)

- **B** 13.7
- **◯ C** 14.0
- **D** 14.3
- (c) Ethanoic acid, CH₃COOH, of concentration 2 mol dm⁻³, making the usual assumptions.

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH_3COO}^-]}{[{\rm CH_3COOH}]} = 1.7 \times 10^{-5} \,{\rm mol}\,{\rm dm}^{-3}$$

(1)

- **B** 2.4
- **C** 4.5
- **D** 4.8
- (d) The mixture formed when 25 cm³ of 2 mol dm⁻³ sodium hydroxide solution is added to 50 cm³ of 2 mol dm⁻³ ethanoic acid, for which $K_a = 1.7 \times 10^{-5}$ mol dm⁻³.

(1)

- **A** 2.2
- **■ B** 2.5
- **C** 4.5
- **D** 4.8

15 In which of these reactions is the hydrogensulfate ion, HSO₄⁻, behaving as a Brønsted-Lowry base?

$$\square$$
 A $HSO_4^- + H_3O^+ \rightarrow H_2SO_4 + H_2O$

$$\square$$
 B $HSO_4^- + Ba^{2+} \rightarrow BaSO_4 + H^+$

$$\square$$
 C $HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$

$$\square$$
 D $HSO_4^- + CO_3^{2-} \rightarrow SO_4^{2-} + HCO_3^-$

(Total for Question 1 mark)

- 16 A solution of hydrochloric acid has pH 3.0. When it is made 10 times more dilute, the pH is
 - **△ A** 0.3
 - **■ B** 2.0
 - **□ C** 4.0
 - **D** 13.0

(Total for Question 1 mark)

17 In which reaction is water acting as a Brønsted-Lowry acid?

$$\square$$
 A $H_2O + HCl \rightarrow H_3O^+ + Cl^-$

$$\square$$
 B $H_2O + SO_3 \rightarrow H_2SO_4$

$$\square$$
 C $H_2O + NH_3 \rightarrow NH_4^+ + OH^-$

$$\square$$
 D $H_2O + CO_2 \rightarrow H_2CO_3$

18	Which	of the following solutions has the lowest pH?
	\mathbf{A}	0.010 mol dm ⁻³ hydrochloric acid.
	\blacksquare B	0.100 mol dm ⁻³ hydrochloric acid.
	区 C	0.010 mol dm ⁻³ ethanoic acid.
	\square D	0.100 mol dm ⁻³ ethanoic acid.
		(Total for Question = 1 mark)
19	An aqı	ueous solution of ammonium chloride, NH ₄ Cl, has a pH of less than 7 because
	⊠ A	the ammonium ions donate protons to water molecules giving rise to oxonium ions, $\rm H_3O^+(aq)$.
	⊠ B	the chloride ions combine with hydrogen ions from water to form hydrochloric acid, HCl(aq).
	⊠ C	an aqueous solution of ammonium chloride is unstable and evolves ammonia gas, $\mathrm{NH}_3(g)$, leaving dilute hydrochloric acid.
	⊠ D	the ammonium chloride reacts with carbon dioxide from the atmosphere giving ammonium carbonate, $(NH_4)_2CO_3(aq)$, and hydrochloric acid, HCl(aq).
		(Total for Question = 1 mark)
20		n one of the following indicators is most suitable for titrating ethanoic acid with
		ol dm ⁻³ sodium hydroxide?
		r to page 19 of your data booklet.)
	⊠ A	Thymol blue (acid)
	⊠ B	Bromothymol blue
	⊠ C	Thymol blue (base)
	⊠ D	Alizarin yellow R
		(Total for Question = 1 mark)

For more help please visit our website www.exampaperspractice.co.uk

- **21** What is the conjugate base of the acid, HCO₃-?
 - ☑ A H₂CO₃
 - B CO₂²⁻
 - C OH⁻
 - ☑ D CO₂

(Total for Question = 1 mark)

- 22 The pH of a 1.5 mol dm ³ solution of hydrochloric acid, HCl(aq), is
 - **△ A** 1.50
 - **B** 0.18
 - **◯ C** 0.18
 - **D** 1.50

(Total for Question 1 mark)

- 23 Which sequence shows the bases in order of decreasing strength?
 - \square A $C_6H_5NH_2 > CH_3NH_2 > NH_3$
 - \square **B** NH₃ > CH₃NH₂ > C₆H₅NH₂
 - \square C CH₃NH₂ > NH₃ > C₆H₅NH₂
 - \square **D** NH₃ > C₆H₅NH₂ > CH₃NH₂

24 Which of the following is **not** a reaction of a Brønsted-Lowry acid and base?

$$\square$$
 A CH₃Cl + OH \rightarrow CH₃OH + Cl

$$\square$$
 B NH₃ + HCl \rightarrow NH₄⁺ + Cl

$$\square$$
 C $H_2O + HSO_4 \rightarrow H_2SO_4 + OH$

$$\square$$
 D HCO₃ + H₂O \rightarrow CO₃² + H₃O⁺

(Total for Question 1 mark)

25 Information about four samples of acid is shown below.

Which of the following lists shows the samples in order of increasing pH?

$$\triangle$$
 A 1, 2, 3, 4

$$\square$$
 C 2, 1, 3, 4

$$\square$$
 D 4, 3, 1, 2

(Total for Question 1 mark)

26 In which of the following reactions is nitric acid acting as a base?

$$\square$$
 A HNO₃ + NaOH \rightarrow NaNO₃ + H₂O

$$\blacksquare$$
 B HNO₃ + H₂O \rightarrow H₃O⁺ + NO₃⁻

$$\square$$
 C HNO₃ + H₂SO₄ \rightarrow H₂NO₃⁺ + HSO₄⁻

$$\square$$
 D HNO₃ + NaHCO₃ \rightarrow NaNO₃ + H₂O + CO₂

27	The dissociation of ethanoic acid in aqueous solution is represented by			
			$CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$	
	Whi	ch of	the following statements is true for this equilibrium?	
	×	A	CH ₃ COOH is an acid and its conjugate base is CH ₃ COO ⁻ .	
	X	В	H ₂ O is an acid and its conjugate base is OH ⁻ .	
	X	C	At equilibrium, the concentrations of each substance are the same.	
	X	D	At equilibrium, the reaction from left to right and the reaction from right to left have stopped.	
			(Total for Question = 1 mark)	
28	Wh	y are	e aqueous solutions of sodium ethanoate slightly alkaline?	
	X	A	The sodium ions react with water to give an alkali.	
	×	B	The ethanoate ions react with water to give hydroxide ions.	
	×	C	All sodium salts give alkaline solutions.	
	X	D	The sodium ethanoate is fully ionized in solution.	
			(Total for Question = 1 mark)	
2			on of a weak acid cannot be titrated with a weak base using an indicator to find point because	
	×	A	the pH change is too gradual close to the equivalence point.	
	X	В	there are too few H ⁺ ions to affect the indicator.	
	×	C	there are too few OH ⁻ ions to affect the indicator.	
	X	D	the pH change occurs outside the range of any indicator.	
			(Total for Question = 1 mark)	

30	30 At 100 °C, pure water has a pH of 6, whereas at 25 °C it has a pH of 7. This is because					
	×	A	the dissociation of water is endothermic, so the concentration of hydrogen ions is lower at 100°C than it is at 25°C .			
	X	В	the dissociation of water is exothermic, so the concentration of hydrogen ions is lower at 100 °C than it is at 25 °C.			
	×	C	the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at 100 $^{\circ}$ C than it is at 25 $^{\circ}$ C.			
	×	D	at 100 °C, water has a higher concentration of hydrogen ions than of hydroxide ions.			
			(Total for Ouestion = 1 mark)			