

Chemical analysis

Topic 8 – Chemical analysis

Table of Content

8.1 Purity, formulations and chromatography	2
8.1.1 Pure substances	2
8.1.2 Formulations	2
8.1.3 Chromatography	2
8.2 Identification of common gases	
8.2.1 Test for hydrogen	3
8.2.2 Test for oxygen	3
8.2.3 Test for carbon dioxide	3
8.2.4 Test for chlorine	3
8.3 Identification of ions by chemical and spectroscop	oic means
(chemistry only)	
8.3.1 Flame tests	4
8.3.2 Metal hydroxides	4
8.3.3 Carbonates	4
8.3.4 Halides	4

8.3.7 Flame emission spectroscopy5

Chemical analysis

8.1 Purity, formulations and chromatography

8.1.1 Pure substances

In Chemistry, pure substance is...

- Single element or compound
- Not mixed with any other substance
- Eg vaporised iodine

Pure elements and compounds

- Melt & boil at specific temp
- Melting & boiling point data \rightarrow distinguish pure substances from mixtures

In everyday language, pure substance is...

- Substance that has had nothing added to it
- Unadulterated & in its natural state
- Eg pure milk

8.1.2 Formulations

Formulations

- Mixture that has been designed as a useful product
- Made by mixing components in carefully measured quantities → ensure product has the required properties
- Eg fuels, cleaning agents, paints, medicines, alloys, fertilisers & foods

8.1.3 Chromatography

What is chromatography used for?

• To separate mixtures & give info to help identify substance

How to set up?

- 1. Draw a pencil line on the paper.
- 2. Place ink on the baseline in a dot.
- Place the paper into the beaker which has water in it. Make sure the baseline is above water level so dye doesn't dissolve in water.
- 4. Hang paper over edge of beaker to keep it right.
- 5. Put a lid on coz $H_2O(s) \rightleftharpoons H_2O(g)$ & lid \rightarrow closed reaction
- 6. Wait for solvent to go up paper near the top.
- 7. Remove paper & let it dry.
- 8. Draw circles around spots.

Describe the results

- A is made up of 1 dye
- B is made up of 1 dye
- C is made up of 1 dye
- A & C matches the colouring from cake icing

Colouring from cake icing

For more help, please visit our website www.exampaperspractice.co.uk

Chemical analysis

Calculate the distance moved by the solvent (2)

$$Rf = \frac{distance\ tranvelled\ by\ dye}{distance\ from\ baseline\ to\ solvent\ front}$$

Explain how different dyes are separated by paper chromatography. (4)

- Solvent moves through paper
- Different dyes have different solubility in solvent & different attractions for paper
- So they are carried to different distances

Why do different compounds separate in a gas chromatograph column? (1)

• Different substances travel at different speeds

Identify the errors & describe problem each error would cause (4)

- Baseline drawn in ink dissolves in solvent
- Dye under solvent dissolves in solvent
- Water level above start line
- Food colours would dissolve into water
- Start line drawn in ink
- Ink would 'run' on the paper

8.2 Identification of common gases

8.2.1 Test for hydrogen

- 8.2.2 Test for oxygen
- 8.2.3 Test for carbon dioxide

8.2.4 Test for chlorine

Gases	Test	Positive Result
Hydrogen (H ₂)	Burning spit held at the open end of a test tube of gas	Burns rapidly with a squeaky pop sound
Oxygen (O ₂)	Insert glowing splint into a test tube of gas	Relights
Carbon dioxide (CO ₂)	Bubble through limewater	Goes milky or cloudy
Chlorine (Cl ₂)	Damp (blue) litmus	(Goes red), then bleaches and turns white
Ammonia (NH ₃)	Damp red litmus	Turns blue

8.3 Identification of ions by chemical and spectroscopic means (chemistry only)

8.3.1 Flame tests

Positive Ion (Cation)	Test	Positive Result
Lithium, Li ⁺	Sodium, Na ⁺ Flame Test otassium , K ⁺ Clean wire loop by dripping it in HCl Place loop in solid of dry sample A Calcium, Ca ²⁺	Crimson Red
Sodium, Na⁺		Yellow
Potassium , K ⁺		Lilac
Calcium, Ca ²⁺		Orange-Red
Copper, Cu ²⁺		Green

Why should wire be clean when used for a flame test? (1)

• To prevent contamination that gives an accurate result

What are the properties that wire must have for a flame test? (2)

- High melting point
- Unreactive

Why is it not possible to tell from the flame test that both ions are present in low concentration? (1)

• Colours mask each other

8.3.2 Metal hydroxides

Positive Ion (Cation)	Test	Positive Result
Zinc, Zn ²⁺	Precipitation NaOH is added dropwise at first A precipitate will appear depending on the ion in the solution	White
Calcium, Ca ²⁺		White
Aluminium, Al ³⁺		White, redissolves in excess NaOH
Copper (II), Cu ²⁺		Blue
Iron (II), Fe ²⁺		Green
Iron (III), Fe ³⁺		Brown
Magnesium, Mg ²⁺		White

8.3.3 Carbonates

- 8.3.4 Halides
- 8.3.5 Sulfates

Negative Ion (Anion)	Test	Positive Result
Carbonate, CO ₃ ²⁻	 Dissolve a fresh sample A in water to make a solution Add dilute acid 	Bubbles of CO₂ gas will produce → turn limewater milky
Chloride, Cl-	Precipitation	White precipitate
Bromide, Br-	 Dissolve a fresh sample A in water to make a solution 	Cream precipitate
Iodide, I-	 Add AgNO₃ and dilute HNO₃ 	Yellow precipitate
Sulfate, SO ₄ ²⁻	Dissolve a fresh sample A in water to make a solution	White precipitate

For more help, please visit our website www.exampaperspractice.co.uk

Chemical analysis

Add BaCl₂ and dilute HCl

8.3.6 Instrumental methods

State the adv of using instrumental methods compared with chemical tests (1)

- Accurate (machines can be more accurate than humans)
- Sensitive (only a small amount of sample is needed)
- Rapid (the information can be found very quickly)

8.3.7 Flame emission spectroscopy

Name one instrumental method used to identify elements or compounds (1)

• Atomic absorption (/emission) spectroscopy

Why would use atomic absorption spectroscopy instead of flame test?

- In flame test, 2 different colours mask each other (esp in low concentration)
- AES separates out individual colours more accurately
- Quicker
- Use a small amount of sample
- More sensitive / accurate / precise

Flame emission spectroscopy

- 1. A sample of metal ion in solution is placed into a flame
- 2. The light given out is then passed through a spectroscope
- 3. Spectroscope converts light into a line spectrum
- 4. Positions of lines in spectrum are specific for a given metal ion so can be analysed to identify metal ions in solution & measure their concentration coz lines become more intense at higher concentration
- Higher con of ion, greater intensity of light given out