

# **Topic 5 – Homeostasis and response**

# **Table of Content**

| 5.1 Homeostasis                                                         | 2  |
|-------------------------------------------------------------------------|----|
| 5.2 The human nervous system                                            | 2  |
| 5.2.1 Structure and function                                            |    |
| 5.2.2 The brain (biology only)                                          | 4  |
| 5.2.3 The eye (biology only)                                            | 4  |
| 5.2.4 Control of body temperature (biology only)                        | 6  |
| 5.3 Hormonal coordination in humans                                     | 6  |
| 5.3.1 Human endocrine system                                            | 6  |
| 5.3.2 Control of blood glucose concentration                            | 8  |
| 5.3.3 Maintaining water and nitrogen balance in the body (biology only) | 9  |
| 5.3.4 Hormones in human reproduction                                    | 10 |
| 5.3.5 Contraception                                                     | 11 |
| 5.3.6 The use of hormones to treat infertility (HT only)                | 12 |
| 5.3.7 Negative feedback (HT only)                                       | 13 |
| 5.4 Plant hormones (biology only)                                       | 13 |
| 5.4.1 Control and coordination                                          | 13 |
| 5.4.2 Use of plant hormones (HT only)                                   | 15 |



# 5.1 Homeostasis

#### What is homeostasis?

• Regulation of internal conditions of a cell or organism to maintain optimal conditions

#### Why is homeostasis important in body? (1)

Maintain optimal conditions for enzymes action & all cell functions

#### In human body, these include control of:

- Blood glucose con
- Body temp
- Water levels

These automatic control systems may involve nervous or chemical responses

#### All control systems include:

- Receptors cells which detect stimuli (changes in environment)
- Coordination centres eg brain, spinal cord & pancreas receive & process info from receptors
- Effectors, muscles or glands restore optimum levels

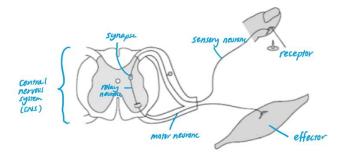
# 5.2 The human nervous system

#### 5.2.1 Structure and function

| Central | nervou |
|---------|--------|
| system  | (CNS)  |

- Brain & spinal cord
- Coordinates response of effectors eg muscles contracting / glands secreting hormones

#### Stimulus $\rightarrow$ receptor $\rightarrow$ coordinator (CNS) $\rightarrow$ effector $\rightarrow$ response


| Describe the function of receptors. (2)            | Describe the function of effectors. (2)          |
|----------------------------------------------------|--------------------------------------------------|
| <ul> <li>Detect changes in surroundings</li> </ul> | <ul> <li>Convert impulse to an action</li> </ul> |
| <ul> <li>Convert stimulus to impulse</li> </ul>    | Eg muscle / gland                                |

#### **Reflex action**

- Automatic & rapid
- Over short period of time
- Don't involve conscious part of brain
- Involves nerve cells & impulses
- Affects only one part of body



#### Structure in a reflex action



| Type of effector | Response effector makes   |
|------------------|---------------------------|
| muscle           | contraction               |
| gland            | Produce chemical / enzyme |

#### Describe the stages that happened in a reflex action. (6)

Stimulus  $\rightarrow$  receptor  $\rightarrow$  sensory neurone (in peripheral)  $\rightarrow$  synapse  $\rightarrow$  relay neurone (in CNS)  $\rightarrow$  synapse  $\rightarrow$  motor neurone (in peripheral)  $\rightarrow$  effector  $\rightarrow$  response

- 1. Stimulus detected by receptor
- 2. Receptor sends electrical impulses along sensory neurons and reaches synapse
- 3. Chemical releases from sensory neurons
- 4. Chemical diffuses across synapse and attaches to relay neurone to stimulate electrical impulse
- 5. Impulse passes along relay neurone and reaches synapse
- 6. Chemical release from relay neurone
- 7. Chemical diffuses across synapse and attaches to motor neurone to stimulate electrical impulse
- 8. Impulse passes along motor neurone to an effector
- 9. Effector causes a response

## How can you tell that it's not a conscious action? (1)

- Not connected to brain
- Coordinated only by spinal cord

#### Reflex actions like this are useful. Explain why. (2)

Rapid response protects body from damage or pain

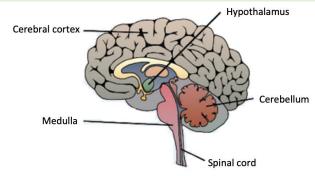
#### **Reflex action times investigation**

- 1. Student A sits with his elbow resting on the edge of a table.
- 2. Student B holds a ruler with the bottom of the ruler level with the thumb of Student A.
- 3. Student B drops the ruler.
- 4. Student A catches the ruler and records the distance.
- 5. Steps 1 to 4 are then repeated.

#### Give two variables the students controlled in their investigation. (2)

- Drop ruler from same height
- Use same weight of ruler

#### What improvement could the students make to the method so the results are more valid? (1)


• Carry out more repeats

## Give a conclusion about the effect of caffeine on reflex actions & reaction time. (1)



• Caffeine speeds up reflex actions & decreases reaction time

# 5.2.2 The brain (biology only)



#### **Functions**

Cerebral cortex - consciousness, intelligence, memory & language

Cerebellum - coordination of muscular activity & balance

Medulla - unconscious activities eg heartbeat & breathing

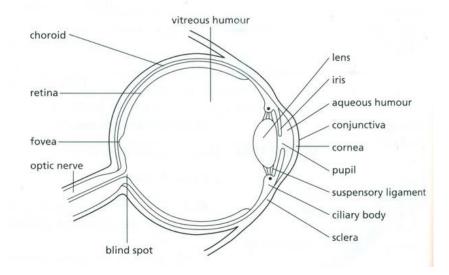
Methods of finding out how much the brain is damaged

Neuroscientists map regions of brain to particular functions by...

- 1. Studying patients with brain damage
- 2. Electrode stimulation electrically stimulating different parts of brain
- 3. MRI scan

Name the technique a doctor would use to find out if the man's brain has been damaged. (1)

MRI scan


#### Difficulties of brain investigation

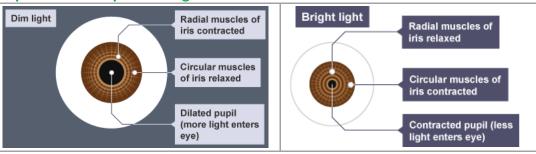
**Explain why it is difficult to treat brain damage. (1)** 

- High risk of causing more damage to brain
- It's complex & delicate
- Difficult to treat brain disorders

# 5.2.3 The eye (biology only)

Eye - a sense organ containing receptors sensitive to light intensity & colour




#### **Functions**



#### Homeostasis and response

| Retina               | contains light receptors, rods & cones       |  |
|----------------------|----------------------------------------------|--|
| Optic nerve          | carries sensory neurons from retina to brain |  |
| Sclera               | tough outer coat                             |  |
| Cornea               | Focus light onto retina                      |  |
| Iris                 | controls amount of light entering eye        |  |
| Ciliary muscles      | • controls shape of lens                     |  |
| Suspensory ligaments | attach lens to ciliary muscles               |  |

## Pupil reflex in response to light



#### **Accommodation**

• process of changing the shape of the lens to focus on near or distant objects

| To focus on near object                                                                                                                                | To focus on a distant object                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                        |                                                                                                                                                                    |
| <ul> <li>ciliary muscles contract</li> <li>suspensory ligaments loosen</li> <li>lens is then thicker &amp; refracts light rays<br/>strongly</li> </ul> | <ul> <li>ciliary muscles relax</li> <li>suspensory ligaments are pulled tight</li> <li>lens is then pulled thin &amp; only slightly refracts light rays</li> </ul> |

#### **Eye defects**

• Occur when light doesn't focus on retina

| Types | Myopia (short sightedness)                                              | Hyperopia (long sightedness)                                        |
|-------|-------------------------------------------------------------------------|---------------------------------------------------------------------|
|       | <ul><li>Lens too curved</li><li>Distant objects appear blurry</li></ul> | <ul><li>Lens too flat</li><li>Cannot refract light enough</li></ul> |

#### **Treatments**



#### Homeostasis and response

| 1. Spectacle lenses | Refract light rays so they focus on retina                                                            |                                                                                   |  |
|---------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|                     | Муоріа                                                                                                | Hyperopia                                                                         |  |
|                     |                                                                                                       |                                                                                   |  |
|                     | Concave lens bends light so light focuses on the retina                                               | Convex lens bring rays together                                                   |  |
|                     | locuses on the retina                                                                                 |                                                                                   |  |
| 2. Contact lenses   | Hard or soft last for different lengths of time                                                       |                                                                                   |  |
| 3. Laser surgery    | Myopia                                                                                                | Hyperopia                                                                         |  |
|                     | <ul><li>Reduce thickness of cornea</li><li>So it refracts less light</li></ul>                        | <ul><li>Change its curvature</li><li>So it refracts light more strongly</li></ul> |  |
| 4. Replacement lens | <ul> <li>Treat hyperopia by replacing it with artificial lens</li> <li>Could damage retina</li> </ul> |                                                                                   |  |

# 5.2.4 Control of body temperature (biology only)

#### Describe what happens in the body to keep the body temperature constant. (6)

- Body temp monitored by thermoregulatory centre (TC)
- TC contains thermoreceptor
- Thermoreceptor in skin send nervous impulses to TC, giving info about skin temp

#### If core body temp too high

- Blood vessels supplying blood to skin dilate
- So more blood flows near skin surface
- More heat loss
- Sweat glands release more sweat to cool body

#### If core body temp too low

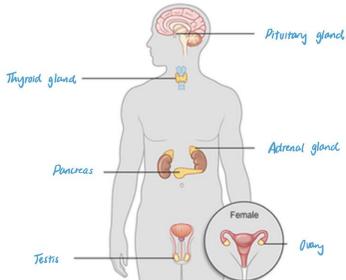
- Blood vessels supplying blood to skin constrict
- Less blood flows near skin surface
- Less heat loss
- Muscles may shiver to release heat energy

#### Why it is important to control body temperature. (1)

- Enzymes work best
- So chemical reactions are fastest
- Prevent damage to cells

# 5.3 Hormonal coordination in humans

# 5.3.1 Human endocrine system


## **Endocrine system**

- Composed of gland which secrete chemicals called hormones into bloodstream
- Hormone transported in bloodstream to target organ where it produces an effect
- Effect slower but longer compare to nervous system



#### What is a hormone? (1)

· Chemical messenger produced by endocrine gland



| Pituitary<br>gland | <ul> <li>Acts as 'master gland'</li> <li>Secretes hormones into blood in response to body conditions</li> <li>(Some hormones act on other glands to stimulate other hormones to produce different hormones)</li> <li>In men - stimulate ovaries</li> <li>In women - stimulate testes</li> </ul> |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Thyroid gland      | <ul> <li>Produce thyroxine</li> <li>Controls metabolic rate</li> <li>Controlled by negative feedback</li> </ul>                                                                                                                                                                                 |  |
| Adrenal gland      | <ul> <li>Produce adrenaline</li> <li>Prepares body for stressful situations / 'fight or flight' response</li> <li>Increase heart rate &amp; delivery of O2 &amp; glucose to brain &amp; muscles</li> </ul>                                                                                      |  |
| Pancreas           | <ul> <li>Secretes insulin</li> <li>Controls level of glucose in blood</li> </ul>                                                                                                                                                                                                                |  |
| Ovary              | <ul> <li>Produce &amp; release eggs</li> <li>Produce oestrogen</li> <li>Causes changes at puberty &amp; control menstrual cycle</li> </ul>                                                                                                                                                      |  |
| Testis             | <ul> <li>Produce sperm</li> <li>Produce testosterone</li> <li>Cause changes at puberty &amp; stimulates sperm production</li> </ul>                                                                                                                                                             |  |

Hyperthyroidism - caused by an overactive thyroid gland

### Suggest what would happen in the body of a person with hyperthyroidism. (3)

- Too much thyroxine is released into blood
- Which raises basal metabolic rate (BMR)
- Causing increase formation of glycogen, rate of respiration, breakdown of proteins



# 5.3.2 Control of blood glucose concentration

Which organ in the body monitors the concentration of glucose (sugar) in the blood? (1)

Pancreas

#### Explain how insulin controls blood glucose levels in body (3)

- If too high, pancreas produces insulin to cause glucose move from blood into cells
- In liver & muscle cells, excess glucose is converted to glycogen for storage
- If too low, pancreas produces glucagon to break down glycogen to convert into glucose & released into blood in a negative feedback cycle

During the race, the cyclist's blood glucose concentration began to decrease. Describe how the body responds when the blood glucose concentration begins to decrease. (3)

- Pancreas detects low blood glucose
- Produces glucagon
- So glycogen is converted to glucose

|                    | Description                                                                                                                      | Treatment                                                                                                                                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type 1<br>diabetes | <ul> <li>Pancreas fails to produce sufficient insulin</li> <li>Characterized by uncollected high blood glucose levels</li> </ul> | <ul> <li>Insulin injections to replace insulin<br/>that isn't made</li> <li>Pancreas transplant</li> <li>(Dis - pancreas could be rejected)</li> </ul> |
| Type 2<br>diabetes | <ul> <li>Body cells no longer respond to insulin produced</li> <li>Risk - obesity</li> </ul>                                     | <ul><li>Carbohydrate controlled diet</li><li>Exercise</li></ul>                                                                                        |

#### Insulin cannot be taken as a tablet. Why? (1)

• It digested / broken down

#### Other than using drugs or insulin, give two methods of treating diabetes. (2)

- Control or change diet
- Exercise
- Pancreas transplant

#### Give one symptom of diabetes (1)

High normal blood sugar & remains high

#### Give one way in which a diabetic may be advised to change their diet. (1)

Small meals

#### How does this change in diet help diabetic? (1)

Prevent high blood sugar

#### A high concentration of glucose in blood can harm body cells as a result of osmosis. Explain why. (4)

- Water movement out of cell from dilute to concentrated solution through partially permeable membrane
- Cell shrink



# 5.3.3 Maintaining water and nitrogen balance in the body (biology only)

- Water leaves body through lungs during exhalation
- · Water, ions & urea lost from skin in sweat
- Excess water, ions & urea are removed through kidneys in urine

#### What happens to body cells if kidneys produce very little urine? (1)

Cells swell

If body cells lose/gain too much water by osmosis, they don't function efficiently

#### The digestion of proteins from diet

- Excess amino acids deaminated & form ammonia
- Ammonia is toxic so converted to urea in liver
- Urea filtered by kidney & released into blood
- Urea in urine stored in bladder for safe excretion

#### How urine is produced by kidneys. (5)

- Urea filtered by kidney & released into blood
- Reabsorption of all glucose, some ions by active transport & water by osmosis as needed by body back into blood
- Urea present in urine

#### Functions of kidneys in maintaining water balance of body

- **Filtration** high pressure in blood forces small molecules (glucose, urea, ions, water) out of blood into tubules
- **Selective reabsorption** all glucose for respiration & enough water & ions to make con in body constant, no urea reabsorbed
- Formation of urine anything remaining in tubules forms urine & passes down into bladder

#### How to keep water concentration constant?

If water concentration in blood too high

- Detected by osmoreceptor in hypothalamus
- Less ADH (anti-diuretic hormone) released by pituitary gland
- Less water reabsorbed from kidney tubules to blood
- Less water in blood

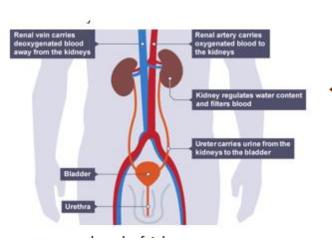
#### If water concentration in blood too low

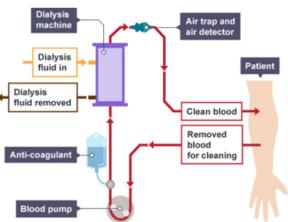
- Detected by osmoreceptor in hypothalamus
- More ADH released by pituitary gland
- More water reabsorbed from kidney tubules to blood
- More water in blood

#### Treatments for kidney failure

| Organ transplant |               | Use kidney dialysis                                                                                                                                                 |
|------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages       | Disadvantages | How it work     Unfiltered blood taken from blood vessel in arm     Blood pump keep blood moving     Mixed with blood thinners / anti-coagulant to prevent clotting |




#### Homeostasis and response


- Keep blood concentration constant
- Prevent high blood pressure
- Cheaper in long term
- Long term drug use
- Hazards of operation
- Shortage of donors
- Inside dialysis machine, blood & dialysis fluid separated by partially permeable membrane.
   Blood flows in opposite direction to dialysis fluid, allowing exchange occur
- Excess ions & water diffuse across partially permeable membrane
- Clean blood flows through bubble trap to get rid of bubbles
- Clean blood returns to blood vessel in arm

#### Dialysis fluid

- Same concentration of glucose & ions no net movement of glucose out of blood
- No urea steep concentration gradient from blood down to fluid - more urea leaves blood

| Advantages                                                                            | Disadvantages                                                                                             |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <ul> <li>Available to all patients</li> <li>No need for immune-suppressant</li> </ul> | <ul> <li>Limit salt &amp; protein intake</li> <li>Risk of blood clot</li> <li>Regular dialysis</li> </ul> |
| drugs                                                                                 | sessions                                                                                                  |





#### Explain why transplanted organ may be rejected. (3)

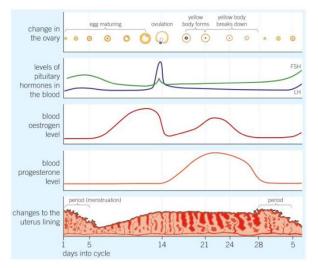
• WBC produce antibodies, which attack antigens on transplanted organ

#### How to prevent kidney from being rejected? (1)

Tissue typing donor kidney

# 5.3.4 Hormones in human reproduction

During puberty reproductive hormones cause secondary sex characteristics to develop.




#### Homeostasis and response

#### What is ovulation? (1)

- Release of egg from ovary
- At puberty eggs begin to mature & one is released every 28 days

| Follicle stimulating hormone (FSH) | <ul><li>Stimulates egg maturation in ovary</li><li>Stimulates ovary to produce oestrogen</li></ul>                                            |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Oestrogen                          | Stimulate release of eggs                                                                                                                     |  |  |
| Luteinising hormone (LH)           | <ul> <li>Inhibits FSH</li> <li>Stimulates release of egg</li> <li>Causes uterus lining to develop, while progesterone maintains it</li> </ul> |  |  |
| Progesterone                       | <ul><li>Maintain uterus lining</li><li>Inhibits release of FSH &amp; LH</li></ul>                                                             |  |  |



# Describe how FSH, LH & oestrogen are involved in control of menstrual cycle. (3)

- FSH stimulate egg maturation
- LS stimulate egg release
- Oestrogen inhibits FSH

The mini-pill is a contraceptive that only contains progesterone hormone.

Explain why missing a dose of mini-pill would reduce success rate of mini-pill. (4)

- Missing a dose cause drop in progesterone level
- So FSH & LH not inhibited anyone
- Egg is matured & released

# 5.3.5 Contraception

#### How oral contraceptives / hormonal methods of contraception prevent eggs mature?

- Contraceptive pill contains oestrogen (stop FSH) & progesterone (stop FSH & LH) stop ovulation
- **Injection**, **implant** or **skin patch** release progesterone inhibit maturation & egg release for a no of months/years (how long and how effective?)

Advantage - reliable

Disadvantage - doesn't protect against STDs

#### How can non-hormonal methods of contraception control fertility?

- Barrier methods eg condoms & diaphragms prevent sperm reaching egg
- Spermicidal agents kill or disable sperm
- Intrauterine devices (IUD) prevent implantation of embryo or release of hormone
- Abstaining from intercourse when egg is in oviduct (natural method)
- Sterilisation (surgical methods)

In women - **female sterilisation** - oviducts are cut to prevent egg from reaching uterus In men - **vasectomy** - sperm tubes are cut to prevent sperm from leaving penis

Disadvantage - x prevent STDs

#### Why issues around contraception cannot be answered by science alone?

The Catholic church teaches that all contraception is unethical, except natural methods



#### **Condom** prevents STDs

# Describe benefits & possible problems that may result from use of hormones to regulate human reproduction. You should refer to fertility drugs & contraceptives in your answer. (4)

|                     | Advantages                                                             | Disadvantages                                                                      |
|---------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Oral contraceptives | <ul><li>Prevent egg release</li><li>Regulate menstrual cycle</li></ul> | <ul><li>Prolonged use may prevent later ovulation</li><li>Cause headache</li></ul> |
| Fertility drugs     | Can stimulate egg release                                              | Multiple births                                                                    |

There are **mechanical**, **chemical**, **surgical and natural** contraceptive methods used to prevent a pregnancy.

#### Mechanical

| Example        | Method                                                                   | Advantage                                          | Disadvantage                     |
|----------------|--------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|
| Male<br>condom | A barrier that prevents sperm entering the vagina.                       | Easily obtained. Protects against STIs (e.g. HIV). | Unreliable if not used properly. |
| Female condom  | A barrier that prevents sperm passing up the female reproductive system. | Easily obtained. Protects against STIs (e.g. HIV). | Unreliable if not used properly. |

#### Chemical

| Example               | Method                                                                                                                                    | Advantage                                              | Disadvantage                                                                                                                                                             |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contraceptive pill    | Taken regularly by the female.<br>Prevents ovulation by<br>changing hormone levels.                                                       | Very<br>reliable.                                      | Female needs to remember to take<br>the pill. Side effects include weight<br>gain, mood swings or an increased<br>risk of blood clots. Does not protect<br>against STIs. |
| Contraceptive implant | A small tube placed under the<br>skin of the upper arm.<br>Releases hormones slowly<br>over a long period of time.<br>Prevents ovulation. | Very<br>reliable.<br>Can work<br>for up to 3<br>years. | Does not protect against STIs. Can prevent menstruation.                                                                                                                 |

#### Surgical

| Example              | Method                                                   | Advantage                | Disadvantage                        |
|----------------------|----------------------------------------------------------|--------------------------|-------------------------------------|
| Vasectomy            | Sperm tubes are cut preventing sperm entering the penis. | Virtually 100% reliable. | Difficult or impossible to reverse. |
| Female sterilisation | Oviducts are cut preventing fertilisation.               | Virtually 100% reliable. | Difficult or impossible to reverse. |

#### Natural

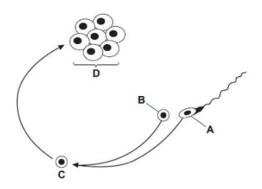
| Example | Method                                                      | Advantage | Disadvantage                                                                      |
|---------|-------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------|
| ,       | Sexual intercourse is avoided around the time of ovulation. |           | Not as reliable as other methods, especially if the menstrual cycle is irregular. |

Source: <a href="https://www.bbc.co.uk/bitesize/guides/zpwjk2p/revision/7">https://www.bbc.co.uk/bitesize/guides/zpwjk2p/revision/7</a>

# 5.3.6 The use of hormones to treat infertility (HT only)

Name 2 hormones used in IVF treatment. (2)

• FSH & LH




#### Why are fertility drugs given to some women? (1)

• To stimulate egg production to help them get pregnant

#### Describe the process of IVF. (4)

- FSH & LH given to mother to matures & release eggs
- Egg collected from mother's ovary & mixed by sperm from father in the lab. Fertilisation occurs.
- Fertilised egg divides & develop into embryos
- When they're tiny balls of cells, one or two embryos are inserted into mother's uterus



#### Disadvantages of IVF treatment (4)

- Low success rate / more likely to have faulty chromosome if too old
- Emotionally & physically stressful
- Multiple births cause possible harm to mother & babies
- Expensive

# The committee which regulates IVF treatment now advises that only one embryo is used in each treatment. Suggest one reason for this. (1)

- So fewer multiple births
- Multiple births cause possible harm to mother & babies

# 5.3.7 Negative feedback (HT only)

Details in...

5.3.2 Control of blood glucose concentration

5.3.3 Maintaining water and nitrogen balance in the body (biology only)

# 5.4 Plant hormones (biology only)

#### 5.4.1 Control and coordination

#### Where is the plant hormone made?

In the root tip

#### Which hormone and how does it control the responses of plants to light and gravity?

**Auxin** 

- Unequal distributions of auxin cause unequal growth rates in plant roots & shoots
- Higher con of hormone causes faster growth in shoot but slower growth in roots

### Why do plant produce hormones?

 To coordinate & control growth and responses to light (phototropism) & gravity (gravitropism or geotropism)

#### Describe how light affect the direction of growth of shoots. (4)

When shoot tip is exposed to light

- More auxin accumulates on shaded side
- This causes cells elongate faster on shaded side as it has a higher con of auxin

#### Homeostasis and response

- Shoot grow towards light (phototropism)
- This is a +ve tropism (plant grows towards stimulus)

#### Explain how phototropism helps plant to survive. (3)

- Plant can get as much light as possible
- More photosynthesis takes place
- Allow more energy to be generated

#### Describe how gravity affect the direction of growth of roots & shoots. (4)

When shoot grow sideways

- More auxin on lower side due to gravity
- This causes cells elongate faster on lower side as it has a higher con of auxin
- Shoot bends upwards (-ve gravi/geotropism)

When root grow sideways

- More auxin on lower side due to gravity
- Extra auxin inhibits growth
- Cells on top elongate faster
- Root bends downwards (+ve gravi/geotropism)


#### Describe how moisture affect the direction of growth of roots & shoots. (4)

Roots grow towards moisture (hydrotropism)

Explain how the hormone causes the appearance of the seedlings in Figure 7 to be different. You should refer to both seedlings in your answer. (3)

Figure 7





#### Seedling from Apparatus A

Seedling from Apparatus B

- Uneven distribution of hormone in A (more auxin at bottom)
- So top grows faster than bottom in A
- Even distribution of hormone in B
- Equal growth in B

#### What happen if shoot is removed?

- No auxin available
- Shoot stop growing

#### **Practical**

#### **Control variables**

- Type of plant
- Amount of water poured to Petri dish

#### Method

- 1. Set up 3 Petri dishes containing cotton wool soaked in equal amounts of water.
- 2. Put 10 mustard seeds in each dish.



#### Homeostasis and response

- 3. Measure the length from the base of the shoot to the tip. Write your measurements in your result table.
- 4. Make accurate labelled drawings of the seed.
- 5. Place one Petri dishes into position.
- Inside the box with the lid closed in darkness
- Inside the box which is cut one side of the box in partial light
- On a windowsill in full sunlight
- 6. Put a lamp above the box which is cut to make sure some light is reaching inside the box. Don't move the dish.
- 7. Water daily with equal amounts of water to each dish.
- 8. Measure length from base of shoot to tip, for at least 5 consecutive days.
- 9. Record your measurements in a result table, one for each light condition and calculate a mean.

# 5.4.2 Use of plant hormones (HT only)

#### Where are plant growth hormones used?

In agriculture & horticulture

#### Why is auxin used?

- As weed killers
- As rooting powders
- To stimulate growth in tissue culture

#### How weed killers has an effect on biodiversity?

Kills plants that some species rely on as food source

#### Why are ethene used in food industry?

To reduce time of ripening of fruit during storage & transport

#### Why is gibberellin used?

- To promote seed germination / flowering
- Increase fruit size
- End seed dormancy