

Chemical changes

GCSE/IGCSE Chemistry notes Topic 4 – Chemical changes

Table of Content

4.1 Reactivity of metals	2
4.1.1 Metal oxides	2
4.1.2 The reactivity series	2
4.1.3 Extraction of metals and reduction	3
4.1.4 Oxidation and reduction in terms of electrons (HT only)	3
4.2 Reactions of acids	4
4.2.1 Reactions of acids with metals	4
4.2.2 Neutralisation of acids and salt production	4
4.2.3 Soluble salts	4
4.2.4 The pH scale and neutralization	5
4.2.5 Titrations (chemistry only)	E
4.2.6 Strong and weak acids (HT only)	e
4.3 Electrolysis	7
4.3.1 The process of electrolysis	7
4.3.2 Electrolysis of molten ionic compounds	7
4.3.3 Using electrolysis to extract metals	7
4.3.4 Electrolysis of aqueous solutions	8
4.3.5 Representation of reactions at electrodes as half equations (HT only)	8

4.1 Reactivity of metals

4.1.1 Metal oxides

Metal oxides

 $Metal_{(s)} + oxygen_{(g)} \rightarrow metal oxides_{(s)}$

OIL RIG

Oxidation is loss of electrons, gain of O₂ **Reduction** is gain of electrons, loss of O₂ (using <u>carbon</u>)

4.1.2 The reactivity series

Reactivity series – need to memorize

Please send lions, cats, monkeys and cute zebras into the lovely, hot countries, signed general penguin

			Reaction with water	Reaction with dilute acid	
Most reactive	Potassium	Ка	• Fizz		
	Sodium	Na	 Giving off H₂(g) 	Explode	
	Lithium	Li	 Leaving an alkaline solution of metal hydroxide 		
	Calcium	Са		 Fizz Giving off H₂(g) 	
	Magnesium	Mg	Very slow reaction	 Forming a salt 	
	Aluminium	Al			
	Carbon	С			
	Zinc	Zn	Very slow reaction	• Fizz	
	Iron	Fe		 Giving off H₂(g) Forming a salt 	
	Tin	Sn	Clight reaction with steam	React slowly with warm	
	Lead	Pb	Slight reaction with steam	acid	
	Hydrogen	Н			
	Copper	Cu	Native metals so unreactive		
	Silver	Ag			
	Gold	Au			
Least reactive	Platinum	Pt			

Chemical changes

Chemical changes

GCSE/IGCSE Chemistry notes

4.1.3 Extraction of metals and reduction

Ore - a rock that contains enough metal to make it economical to extract

			Extraction of metals	
Most reactive	Potassium	Ка		
	Sodium	Na		
	Lithium	Li	Eutropt by algetralysis	
	Calcium	Са	Extract by electrolysis	
	Magnesium	Mg		
	Aluminium	Al		
	Carbon	C		
	Zinc	Zn		
	Iron	Fe	Metal ore	
	Tin	Sn	Extract by metal oxide by <u>reduction</u> using <u>carbon</u>	
	Lead	Pb	Why carbon? C is more reactive	
	Hydrogen	Н		
	Copper	Cu		
	Silver	Ag		
	Gold	Au	Occur native in the ground	
Least reactive	Platinum	Pt		

4.1.4 Oxidation and reduction in terms of electrons (HT only)

Displacement reaction

- More reactive displace less reactive elements
- More reactive(s) + compound(aq) → less reactive(s) + compound(aq)

Eg Magnesium + copper chloride \rightarrow copper + magnesium chloride

 $Mg + CuCl_2 \rightarrow Cu + MgCl_2$

- Magnesium loses $2e^-$ & become Mg $2^+ \rightarrow \underline{oxidation}$ Mg \rightarrow Mg $^{2+}$ + $2e^-$
- Copper gains $2e^-$ & become Cu \rightarrow reduction Cu²⁺ + $2e^- \rightarrow$ Cu

Ionic equation

• Solid and liquid don't separate

Chemical changes

Ionic Equation

Write the complete, total ionic and net ionic equations for the reaction of aqueous sodium carbonate with aqueous barium nitrate.

Word equation:

sodium carbonate + barium nitrate \rightarrow sodium nitrate + barium carbonate

```
Complete chemical equation:
```

 $Na_2CO_3 + Ba(NO_3)_2 \rightarrow 2NaNO_3 + BaCO_3(s)$

```
Total ionic equation:
```

 $2Na^{+1} + CO_3^{-2} + Ba^{+2} + 2NO_3^{-1} \rightarrow 2Na^{+1} + 2NO_3^{-1} + BaCO_3(s)$

```
Net ionic equation:
2Na^{+1} + CO_3^{-2} + Ba^{+2} + 2NO_3^{-1} \rightarrow 2Na^{+1} + 2NO_3^{-1} + BaCO_3(s)
```

```
Ba^{+2} + CO_3^{-2} \rightarrow BaCO_3(s)
```

4.2 Reactions of acids

Important formulae

Acid + alkali / base \rightarrow salt + water Acid + metal \rightarrow salt + hydrogen Acid + metal oxide \rightarrow salt + water Acid + metal hydroxide \rightarrow salt water Acid + metal carbonate \rightarrow salt + water + carbon dioxide

4.2.1 Reactions of acids with metals

(Reactivity: see table in 4.1.2 The reactivity series)

Acid + metal → salt + hydrogen

Acid	Hydrochloric acid	Sulfuric acid
Metal	$\begin{array}{l} \mbox{Metal + hydrochloric acid} \rightarrow \mbox{metal chloride + hydrogen} \\ \mbox{M + 2HCl} \rightarrow \mbox{MCl}_2 + \mbox{H}_2 \end{array}$	Metal + sulfuric acid \rightarrow metal sulfate + hydrogen M + H ₂ SO ₄ \rightarrow MSO ₄ + H ₂

Knowledge of reactions limited to those of magnesium, zinc and iron with hydrochloric and sulfuric acids

Acid	Hydrochloric acid	Sulfuric acid
Magnesium	$Mg + 2HCI \rightarrow MgCl_2 + H_2$	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$
Zinc	$Zn + 2HCl \rightarrow ZnCl_2 + H_2$	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
Iron	$Fe + 2HCI \rightarrow FeCl_2 + H_2$	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$

4.2.2 Neutralisation of acids and salt production

(See 4.2.1 Reactions of acids with metals – Important formulae) (See 4.2.4 The pH scale and neutralization)

Redox reaction - reduction and oxidation happens at the same time

Zinc displaces copper from a solution of copper(II) sulfate. Using ionic equations, determine which species undergoes oxidation and which species undergoes reduction. (2)

- Equation: $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
- Ionic equation: $Zn + Cu^{2+} + SO_4^{2-} \rightarrow Zn^{2+} + SO_4^{2-} + Cu$

For more help, please visit our website www.exampaperspractice.co.uk

- $Zn \rightarrow Zn^{2+} + 2e^{-}$
 - Zn oxidised as lost electron
- $Cu^{2+} + 2e^- \rightarrow Cu = reduction$
 - H reduced as gained electron

4.2.3 Soluble salts

Acid + metal oxide → salt + water

For example

Copper oxide + sulfuric acid \rightarrow copper sulfate + water CuO + H₂SO₄ \rightarrow CuSO₄ + H₂O

Notes

- Metal oxides are often insoluble in water reaction mixture needs warming
- Ionic equation is always H⁺(aq) + OH⁻ → H₂O(I)
- This is a neutralisation reaction as H⁺ are used up

Acid + metal hydroxide → salt water

For example

Sodium hydroxide + nitric acid \rightarrow sodium nitrate + water NaOH + HNO₃ \rightarrow NaNO₃ + H₂O

Notes

- Ionic equation is always H⁺(aq) + OH⁻ → H₂O(I)
- This is a neutralisation reaction as H⁺ are used up

Acid + metal carbonate → salt + water + carbon dioxide

For example

Calcium carbonate + hydrochloric acid \rightarrow calcium chloride + water + carbon dioxide CaCO₃ + 2HCl \rightarrow CaCl₂ + H₂O + CO₂

Notes

- When acids react with carbonates, there is fizzing as CO₂(g) is formed
- Ionic equation is always H⁺(aq) + OH⁻ → H₂O(I)
- This is a neutralisation reaction as H⁺ are used up

Describe how to make pure, dry sample of named salt from information provided.

Describe a safe method for making pure crystals of copper sulfate from copper carbonate and dilute sulfuric acid. Use the information in the figure above to help you. In your method you should name all of the apparatus you will use. (6)

- 1. Pour sulfuric acid in the beaker
- 2. Add copper carbonate one spatula at a time until copper carbonate is in excess or until no more effervescence occurs
- 3. Filter excess copper carbonate using filter paper and funnel
- 4. Pour solution into evaporating basin
- 5. Heat using Bunsen burner
- 6. Leave to crystallise / for water to evaporate
- 7. Decant solution
- 8. Pat dry using filter paper
- 9. Wear safety goggles

For more help, please visit our website www.exampaperspractice.co.uk

Chemical changes

Chemical changes

Level 3 (5 - 6 marks): A coherent method is described with relevant detail, and in correct sequence which demonstrates a broad understanding of the relevant scientific techniques and procedures. The steps in the method are logically ordered. The method would lead to the production of valid results.

4.2.4 The pH scale and neutralization

Acid	Alkalis
Produce H+ in aq solution	When dissolved in water, produce OH-
Proton donors	Proton acceptors

pH scale (0-14)

- A measure of the acidity / alkalinity of a solution using universal indicator or pH probe
- pH 7 = neutral solution
- pH less than 7 = acids(aq)
- pH more than 7 = alkali(aq)
- Stronger the acid, lower the pH
- As pH decreases by 1 unit, H⁺ concentration of solution increases by factor of 10

Neutralisation reaction

- Acid + alkali → salt + water
 - Ionic equation is always H⁺(aq) + OH⁻ → H₂O(I)
 - H⁺ are used up

4.2.5 Titrations (chemistry only)

Describe how to carry out tutrations using strong acids and strong alkalis (limited to sulfuric, hydrochloric and nitric acids only) to find the reacting volumes accurately (6)

- 1. Use pipette to measure 25cm³ of alkali into conical flask.
- 2. Fill burette with acid using funnel
- 3. Add 3 drops of indicator eg phenolphthalein to conical flask & swirl
- 4. Place conical flask on white tile directly below burette
- 5. Record initial reading of acid in burette
- 6. Open the burette tap & add acid dropwise from burette with swirling towards endpoint
- 7. Close burette when colour changes
- Phenolphthalein pink \rightarrow colourless
- Methyl orange yellow \rightarrow red
- Litmus blue \rightarrow red
- 8. Record final reading of acid in burette & calculate titre.
- 9. Repeat 1-8 till obtain concordant result (within 0.1cm³ of each other)

The student used phenolphthalein as an indicator rather than universal indicator. Explain why a mixed indicator should not be used for an acid-base titration (2)

- Mixed indicators change colour gradually over a pH range
- During an acid-base titration, you want to see a sudden colour change at the endpoint, so you need to use a single indicator

Why is pipette used to measure HCI? (1)

• Pipette can measure out a known volume accurately

For more help, please visit our website www.exampaperspractice.co.uk

Why is burette used to measure sodium carbonate? (1)

• Burette can measure out an unknown volume accurately

4.2.6 Strong and weak acids (HT only)

Strong acid - completely ionised in aqueous solution

- Eg hydrochloric, nitric and sulfuric acids
- Weak acid partially ionised in aqueous solution
 - Eg ethanoic, citric and carbonic acids

Dilute - has less acid molecules in a give volume of solution **Concentrated** - has more acid molecules in a give volume of solution

4.3 Electrolysis

4.3.1 The process of electrolysis

Electrolysis

- When ionic substance is molten (electrolyte)
- Ions move freely & pass electric current
 - +ve ions to move to -ve electrode (cathode)
 - -ve ions to move to +ve electrode (anode)
- Ions are discharged at electrodes producing elements

Why is electrolysis used?

• To extract metals from molten compounds

Why is electrolysis expensive? (2)

- Uses large amount of energy
- To melt compounds
- To produce electric current

For more help, please visit our website www.exampaperspractice.co.uk

Chemical changes

4.3.2 Electrolysis of molten ionic compounds

When a simple ionic compound (eg lead bromide) is electrolysed in molten state using inert electrodes

- Metal (lead) is produced at cathode
- Non-metal (bromine) is produced at anode

Students should be able to predict the products of electrolysis of binary ionic compounds in the molten state

4.3.3 Using electrolysis to extract metals

Extraction of aluminium

• Aluminium is manufactured by electrolysis of a molten mixture of aluminium oxide & cryolite using carbon as +ve electrode.

(b) Aluminium is extracted by electrolysis, as shown in Figure 2.

Why can aluminium not be extracted by heating aluminium oxide with carbon? (1)

• Al is more reactive than C so it displaced C

Explain why aluminium forms at the negative electrode during electrolysis (1)

- Al³⁺ is +ve charged so it will attract to -ve charged electrode, where they gain e⁻
- $AI^{3+} + 3e^{-} \rightarrow AI$

Explain why +ve electrode is used up during the process (3)

- Electrode is made of carbon
- O₂ is produced at +ve electrode
- $C + O_2 \rightarrow CO_2$

Why does the carbon anode used in the electrolysis cell need to be continually replaced (3)

- O₂ is produced at +ve electrode
- $C + O_2 \rightarrow CO_2$
- Carbon anode wears away

Why cryolite is used? (1)

• Lower melting pt of aluminium oxide

4.3.4 Electrolysis of aqueous solutions

Chemical changes

In aq solutions	
Anode	Halide present \rightarrow given off If not $\rightarrow O_2$ released $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ (oxidation)
Cathode	Cation more reactive than $H_2 \rightarrow H_2$ produced If not \rightarrow metal produced $2H^+ + 2e^- \rightarrow H_2$ (reduction)

In liquid - ions split up eg NaF \rightarrow Na + F₂

4.3.5 Representation of reactions at electrodes as half equations (HT only) Common electrolytes

Aq solution (ions present)	Products at Anode	Products at Cathode
Concentrated NaCl	$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$ (oxidation) Cl_2 released	$2H^+ + 2e^- \rightarrow H_2$ (reduction) H_2 released
Concentrated CuSO ₄	$4OH^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$ (oxidation) O_2 released	$Cu^{2+} + 2e^{-} \rightarrow Cu$ (reduction) Cu less reactive than H ₂ so Cu produced