

Quantitative chemistry

Topic 3 – Quantitative chemistry

Table of Content

3.1 Chemical measurements, conservation of mass and the quantitative	
interpretation of chemical equations	2
3.1.1 Conservation of mass and balanced chemical equations	2
3.1.2 Relative formula mass	2
3.1.3 Mass changes when a reactant or product is a gas	3
3.1.4 Chemical measurements	3
3.2 Use of amount of substance in relation to masses of pure substances	3
3.2.1 Moles (HT only)	3
3.2.2 Amounts of substances in equations (HT only)	4
3.2.3 Using moles to balance equations (HT only)	4
3.2.4 Limiting reactants (HT only)	4
3.2.5 Concentration of solutions	4
3.3 Yield and atom economy of chemical reactions (chemistry only)	4
3.3.1 Percentage yield	4
3.3.2 Atom economy	5
3.4 Using concentrations of solutions in mol/dm3 (chemistry only) (HT only	y) 5
3.5 Use of amount of substance in relation to volumes of gases (chemistry only) (HT only).	6
All the formulae	6

3.1 Chemical measurements, conservation of mass and the quantitative interpretation of chemical equations

3.1.1 Conservation of mass and balanced chemical equations

Law of conservation of mass

- No atoms are lost or made during a chemical reaction
- So mass of products = mass of reactants

The student's results are shown in the table below.

	Mass in g
Beaker A and contents before mixing	127.60
Beaker B and contents before mixing	126.86
Beaker A and contents after mixing	153.09
Beaker B after mixing	101.37

Use the data from the table to show that the law of conservation of mass is true.

[3 marks]

- Total mass before = 127.6 + 126.86 = 254.46
- Total mass after = 153.09 + 101.37 = 243.46
- So mass of products = mass of reactants

A fellow student also tests the law of conservation of mass and decides to use the same method but performs the experiment with a different reaction.

The equation for the reaction is:

 $Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)$

This students' results appear to fail to support the law of conservation of mass.

Explain why this is so.

[3 marks]

- CO₂ is a gas
- Which escapes during the reaction
- So the mass at the end of the experiment is less expected as mass has been lost

Explain why an unbalanced chemical equation cannot correctly describe a chemical reaction (2)

- Must end up with the same no of atoms as at the start
- Otherwise matter is shown to be lost / gained
- Won't show correct amount of each element / compound

3.1.2 Relative formula mass

Relative formula mass (Mr)

Calculate the relative formula mass (M_r) of the compound lead nitrate Pb(NO₃)₂

Relative atomic masses (A_r): N = 14; O = 16; Pb = 207

[2 marks]

• 207 + 2 × [14 + (3 × 16)] = 331

For more help, please visit our website www.exampaperspractice.co.uk

In a balanced chemical equation

• Sum of Mr of reactants in the quantities = sum of Mr of products in the quantities

Why is there a change in mass?

• A reactant or product is a gas & its mass has not been taken into account

Percentage composition

 $Percentage (\%) = \frac{mass \text{ or } Mr \text{ of element}}{mass \text{ or } Mr \text{ of compound}} \times 100\%$

How much Fe is there in FeSO₄?

 $Mr(Fe) = 56, Mr(FeSO_4) = 152$

Percentage (%) = $\frac{Mr \ of \ element}{Mr \ of \ compound} \times 100\% = \frac{56}{152} \times 100\% = 36.8\%$

3.1.3 Mass changes when a reactant or product is a gas

When a metal reacts with O₂

- Mass of the oxide produced is greater than the mass of the metal
- In thermal decompositions of metal carbonates
 - CO₂ is produced
 - Which escapes into the atmosphere
 - o Leaving the metal oxide as the only solid product

The equation for the reaction is $2HCl(aq) + CaCO_3(s) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$. Explain why there is a loss in mass in this investigation (2)

- A gas is produced
- Which escapes from the flask

3.1.4 Chemical measurements

(Do practice questions)

3.2 Use of amount of substance in relation to masses of pure substances

3.2.1 Moles (HT only)

Moles

 $mole\ (mol) = rac{mass\ (g)}{Mr}$

Avogadro constant = 6.02×10^{23} No of molecules = mole $\times 6.02 \times 10^{23}$

Mass of 1 mol of a substance

= relative atomic mass (Ar) in grams if substance is an element = relative formula mass (Mr) in grams if substance is a compound

For more help, please visit our website www.exampaperspractice.co.uk

Reacting masses

Eg If I react 10g of CaCO₃ with excess HCl, what mass of CaCl₂ should I produce?

EXAM PAPERS PRACTICE

 $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$

 $n(CaCO_3) = \frac{mass (g)}{Mr} = \frac{10}{100} = 0.1 mol$ $0.1 = \frac{mass (CaCl2)}{110}$ $mass(CaCl_2) = 11g$

3.2.2 Amounts of substances in equations (HT only)

(Linked to other sub-topics)

3.2.3 Using moles to balance equations (HT only)

(Linked to other sub-topics)

3.2.4 Limiting reactants (HT only)

0 8. **7** In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.

The equation for the reaction is:

TiCl₄ + 4 Na → Ti + 4 NaCl

Relative atomic masses (A_r): Na = 23 Cl = 35.5 Ti = 48

Explain why titanium chloride is the limiting reactant.

You must show your working.

[4 marks]

Mr of TiCl4 = 190

$$n(Na) = \frac{mass (g)}{Mr} = \frac{20000}{23} = 870 mol$$
$$n(TiCl4) = \frac{mass (g)}{Mr} = \frac{40000}{190} = 211 mol$$

Na is in excess as n(Na) = 870 mol is more than 844 mol needed or $n(TiCl_4) = 211$ mol is less than 217.5 mol needed

3.2.5 Concentration of solutions

(See 3.4 Using concentrations of solutions in mol/dm3 (chemistry only) (HT only))

3.3 Yield and atom economy of chemical reactions (chemistry only)

3.3.1 Percentage yield

Percentage yield

Percentage yield (%) = $\frac{actual mass of product}{max mass of product} \times 100\%$

For a Stage 2 reaction the percentage yield was 92.3% The theoretical maximum mass of titanium produced in this batch was 13.5 kg. Calculate the actual mass of titanium produced. (2) Percentage yield (%) = $\frac{actual mass of product}{actual mass of product} \times 100\%$

$$\frac{100\%}{\text{max mass of product}} \times 100\%$$

For more help, please visit our website www.exampaperspractice.co.uk

Quantitative chemistry

Actual mass of titanium = 12.5kg

Factors that affect % yield

- Not all reactant is reacted
- Some product is lost when separated from reaction mixture
- Unexpected reaction

3.3.2 Atom economy

 $Atom \ economy = \frac{Mr \ of \ desired \ product}{Total \ Mr \ of \ all \ reactants} \times 100\%$

0 2.5 An equation for the reaction is:

 $NiO + C \rightarrow Ni + CO$

Calculate the percentage atom economy for the reaction to produce nickel.

Relative atomic masses (A_r): C = 12 Ni = 59

Relative formula mass (M_r): NiO = 75

Give your answer to 3 significant figures.

[3 marks]

Atom economy = $\frac{Mr \ of \ desired \ product}{Total \ Mr \ of \ all \ reactants} \times 100\% = \frac{59}{87} \times 100\% = 67.8\%$

Why is it important for percentage of atom economy of a reaction to be as high as possible (2)

- Important for sustainable development
- Economic reasons
- Waste products may be pollutants

Different results – additional product is made e.g. CO₂, H₂O

3.4 Using concentrations of solutions in mol/dm3 (chemistry only) (HT only)

mole = concentration × volume n = cv

n = number of moles (mol) c = concentration of solution (mol/dm⁻³)

v = volume of solution (dm⁻³)

 $1 dm^3 = 1000 cm^3$

A student titrated 25.0 cm³ portions of dilute sulfuric acid with a 0.105 mol/dm³ sodium hydroxide solution.

0 9. **3 Table 4** shows the student's results.

Table 4

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of sodium hydroxide solution in cm ³	23.50	21.10	22.10	22.15	22.15

The equation for the reaction is:

 $2 \text{ NaOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$

Calculate the concentration of the sulfuric acid in mol/dm³

Use only the student's concordant results.

Concordant results are those within 0.10 cm³ of each other.

[5 marks]

Average titre =
$$\frac{22.10+22.15+22.15}{3}$$
 = 22.13*cm*³ = 0.02213dm⁻³

$$n(NaOH) = cv = 0.105 \times 0.02213 = 0.002324$$

$$n(H2SO4) = \frac{1}{2} \times 0.002324 = 0.001162$$

 $0.001162 = c(H2SO4) \times 0.025 = 0.0465 \text{mol/dm}^{-3}$

3.5 Use of amount of substance in relation to volumes of gases (chemistry only) (HT only)

1 mole of gas = 24 dm^3 $1 \text{ dm}^3 = 1000 \text{ cm}^3$ $1 \text{ m}^3 = 1000 \text{ cm}^3$

volume (dm³) noles :

A helium balloon has a volume of 48000 cm³. Calculate the moles of helium in the balloon. (2)

 $n(He) = \frac{volume \ (dm^3)}{24 \ dm^3} = \frac{48}{24} = 2mol$

All the formulae $mole\ (mol) = \frac{mass\ (g)}{Mr}$ volume (dm³ noles $24 dm^3$ Percentage (%) = $rac{mass \ or \ Mr \ of \ element}{mass \ or \ Mr \ of \ compound}$:100% mole = concentration × volume n = cv $Percentage yield (\%) = \frac{actual mass of product}{max mass of product}$ < 100%

GCSE/IGCSE Chemistry notes $economy = \frac{Mr \ of \ desired \ product}{Total \ Mr \ of \ all \ reactants} \times 100\%$ Atom economy =

Quantitative chemistry