

Topic 2 – Thermal physics

Table of Content

2.1 Simple kinetic molecular model of matter	2
2.1.1 States of matter	
2.1.2 Molecular model	2
2.1.3 Evaporation	2
2.1.4 Pressure changes	

Z.	2 I nermal properties and temperature	. 3
	2.2.1 Thermal expansion of solids, liquids and gases	
	2.2.2 Measurement of temperature	. 3
	2.2.3 Thermal capacity (heat capacity)	5
	2.2.4 Melting and boiling	5

2.3 Thermal processes	
2.3.1 Conduction	6
2.3.2 Convection	6
2.3.3 Radiation	7
2.3.4 Consequences of energy transfer	

2.1 Simple kinetic molecular model of matter

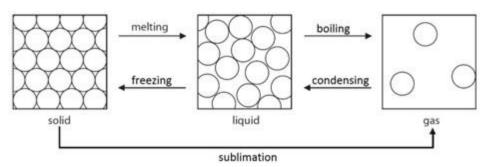
2.1.1 States of matter

(OCON) (O	Liquid	Gas
 Close together in regular pattern Strong intermolecular force of attraction Vibrate at fixed position Fixed shape & volume 	 Close together in random pattern Further apart than solid Weaker intermolecular force of attraction Slide past each other Can't be compressed Why can't compress? Large intermolecular forces when molecules moved closer 	 Far apart in random pattern Weaker intermolecular force of attraction Move quickly in all directions Can flow or compress

2.1.2 Molecular model

Brownian motion

- Smoke particles bombard with air molecules
- Smoke move in zig-zag paths in all directions
- Air gain KE & move faster randomly in all directions



2.1.3 Evaporation

- Most energetic molecules overcome intermolecular force, escape from surface escape & become gas
- Less energetic molecules left behind $\rightarrow \downarrow$ KE of molecules $\rightarrow \downarrow$ temp \rightarrow thermal energy lost Evaporation can be accelerated by
 - \uparrow temp more particles have energy to escape
 - \uparrow surface area more molecules are close to the surface
 - \downarrow humidity more molecules escape

State changes

• Whilst a substance changes its state, temp of material remains constant

2.1.4 Pressure changes

- Pressure is inversely proportional to the volume given a constant temperature.
- If the volume increases and the temperature stays constant, the particles hit the surface less often, thus decreasing the pressure

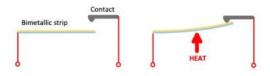
$$PP_1VV_1 = PP_2VV_2$$

For a fixed mass of gas at constant temperature *PPVV* = *ccccccccccc*

• As the temperature increases of a fixed mass of gas, the pressure increases as the average kinetic energy increases

2.2 Thermal properties and temperature

2.2.1 Thermal expansion of solids, liquids and gases


• Expand when heated coz atoms vibrate more \rightarrow move further apart, take up greater volume

State	Expansion
Solid	Expand slightly – due to strong bonds holding molecules tgt
Liquid	Expand more than solids – due to weaker bonds between molecules
Gas	Expand significantly – due to no bonds holding molecules tgt

Applications & Consequences

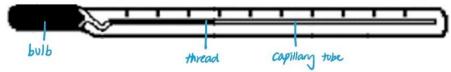
Applications:

- Expansion of liquid in thermometer measure temperature.
- **Bimetallic strip**, consisting of two metals that expand at different rates, can be made to bend at a given temperature, forming a temperature-activated switch.

The bimetallic strip will bend upwards when heated, closing the circuit

Consequences

- The expansion of solid materials can cause them to buckle if they get too hot.
- Eg metal railway tracks, bridges
- Things that are prone to buckling in this way often have gaps built into them, providing room for expansion


2.2.2 Measurement of temperature

• When a substance is heated, volume, density & electrical resistance of substance can change

Thermometers

- Fixed points lower: 0°C, upper: 100°C
- Sensitivity change in length when temp \uparrow/\downarrow
- Range difference between highest & lowest temp
- Linearity when given change in temp causes same change in length, liquid expands uniformly
- **Responsiveness** time it takes to react to change in temp

Liquid-in-glass thermometer

• As temperature rises or falls, the liquid (mercury or alcohol) expands or contracts

To increase...

Sensitivity	Narrow tube - quicker change on scale	
	Bigger bulb	
	Alcohol expands more than mercury	
Range	Longer tube	
Linearity	Expands uniformly for each degree of temperature rise	

Alcohol

- High expansivity reading easily observed
- Linear expansion expands uniformly over wide range of temp
- Low melting / freezing pt
- Non-toxic

Building a thermometer

- In order to build a thermometer based on one of these properties, you need to start by measuring the property at some well-defined **fixed points**
- A fixed point is a temperature at which some easily identifiable change occurs, such as the melting of ice (at 0 °c) or the boiling of pure water (at 100 °c)

Ice melts and water boils at well-defined temperatures (fixed points) which may be used to calibrate thermometers

- These fixed points allow you to know the temperature without having to measure it directly.
- Usually two fixed points are used:
 - The lower fixed point: the melting temperature of ice.
 - The upper fixed point: **the boiling temperature of pure water**.
- Once a property (such as electrical resistance) has been measured at these two fixed points, the values of that property at other temperatures can be worked out

Thermocouple

- Thermocouple thermometers have wires made of two different materials, e.g iron and copper that are joined together. If one junction is at a higher temperature than the other one, an electric current flows, producing a reading on a digital voltmeter, the voltage of the current is directly related to the temperature
- Temp difference causes voltage \rightarrow reading of meter change
- \uparrow temp difference \uparrow current

Advantages

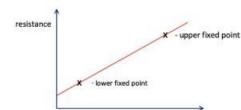
- Rapid response junction small mass, heat faster
- Large range
- Remote reading

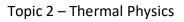
2.2.3 Thermal capacity (heat capacity)

- ↑ temp of a body is ↑ internal energy of that body
- Average KE of a gas particle is directly proportional to temp

ccheeeeeccee ccccccccccc = eeccccc × cccceecccsscccc heecccc ccccccccccccc

ccheeeeeccee cccccccccc = eecc


Thermal capacity of an object


- Amount of heat energy required to raise the temperature of that object by 1°C
- \uparrow thermal capacity, \uparrow heat energy it takes to raise its temperature
- Also equal to the amount of heat energy an object will give out when it cools by 1°C

Specific heat capacity - amount of heat energy needed for 1kg of a substance to raise its temp by 1°C eecceeeeeecc cceeccccsseeeeeeett = eecccccc × cccceecccsscccc heecccc ccccccccccc × cchcccceeee cccc cceeeeccceeeecctteeee

Volt Meter Iron Copper Hot Junction

temperature

 $eecceeeeecc\ cceecccccsseeeeeett = eecc\Delta TT$

Unit specific heat capacity: (J/kg °C)

2.2.4 Melting and boiling

- When process starts, there isn't increase in temp of the substance coz thermal energy supplied is being used to break bonds between particles
- Latent Heat: energy required to change the state of a substance.
 - This energy is required to break the bonds holding molecules together
- Specific Latent Heat: energy required to change the state of 1 kg of that substance eecceeeeecc cceeccccsseeeeeeett = eecccccc × cccceecccsscccc

eecccceecccc heecccc

eecceeeeecc cceeccccsseeeeeeett = eemm

Melting	$solid \rightarrow liquid$
Latent heat of fusion	Amount of energy to change 1kg of solid to liquid at constant temp

Boiling	$liquid \rightarrow gas$
Latent heat of vaporization	Amount of energy to change 1kg of liquid to gas at constant temp

Evaporation vs Boiling

Similarities	Differences	
• liquid \rightarrow gas	Evaporation	Boiling
Gain thermal energy	 No bubbles Don't need external energy source Occurs between 0°C & 100°C 	 Form bubbles Need external energy source Occurs at 100°C

Condensation •

 $\mathsf{gas} \rightarrow$

liquid

• When gas cools, particles lose energy & move slower. When bump into each other, they don't have enough energy to bounce away again so they stay closer together & forms bonds → become liquid

Solidification (freezing)

- liquid \rightarrow solid
- When liquid cools, particles more slower. Eventually they stop moving except for vibrations → become solid

2.3 Thermal processes

2.3.1 Conduction

- In solids or liquids
- Flow of heat through matter from places of higher temperature to places of lower temperature without movement of the matter as a whole

Metals	Non-metal
 Good conductor Electrons are free to travel randomly & collide neighboring particles and transfer heat energy 	Poor conductor

2.3.2 Convection

- In liquid or gas
- Flow of heat through a fluid from places of higher temperature in places of lower temperature by movement of the fluid itself
- As fluid warms up, warmer particles become less dense and rise up to surface. They then cool and sinks to the heat source to displace it, creating a cycle called convection current
 - 5 Fig. 5.1 shows a cross-section of the inside of a vacuum flask containing a cold liquid. The walls of the vacuum flask are made of glass.

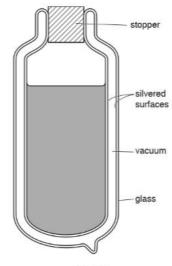
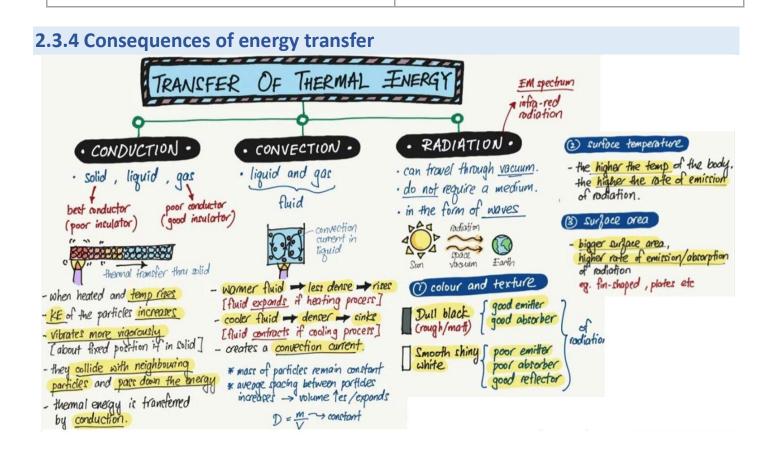


Fig. 5.1

(a) The vacuum flask is being used to keep a liquid cool on a hot day.

Explain how the labelled features of the vacuum flask keep the liquid cool by reducing thermal energy transfer, include the names of the processes involved. - Stopper reduces heat gain by convection - Silvered surfaces reflect thermal radiation and a poor absorber

- Vacuum prevents heat gain by convection
- Glass is a poor conductor


2.3.3 Radiation

- Flow of heat energy from one place to another by infra-red radiation
- Can travel through vacuum
- Doesn't require medium

Topic 2 – Thermal Physics

Emitter / Absorber	Reflector
 Sends out / Absorb thermal radiation Emitter - cools down quickly Absorber - heats up quickly Poor reflector 	Reflects thermal radiationPoor absorber

