

Topic 2 – Organisation

Table of Content

2.1 Principles of organisation	2
2.2 Animal tissues, organs and organ systems	2
2.2.1 The human digestive system	2
2.2.2 The heart and blood vessels	5
2.2.3 Blood	6
2.2.4 Coronary heart disease: a non-communicable disease	7
2.2.5 Health issues	9
2.2.6 The effect of lifestyle on some non-communicable diseases	10
2.2.7 Cancer	10

2.3 Plant tissues, organs and systems11

2.3.1	Plant tissues	11
2.3.2	Plant organ system	12

Organisation

2.1 Principles of organisation

Cells \rightarrow tissues \rightarrow organs \rightarrow organ system \rightarrow organism

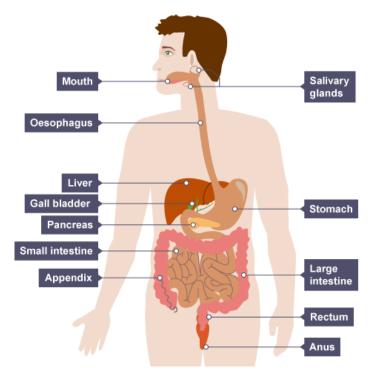
Cells - basic structural	&	functional	units	of living	organisms
--------------------------	---	------------	-------	-----------	-----------

Muscular	 Contracts to move things attached to it In stomach, contracts to move food
Glandular	 Contains secretory cells Produce & release substances (enzymes, hormones)
Epithelial	Covers outside of body & internal organs

Tissues - a group of cells with similar structure & function working tgt

In stomach

Muscular	Contract to churn food
Glandular	Produce digestive juice to digest food with enzyme & HCl
Epithelial	Covers outside & inside of stomach


Organs - a group of different tissues working together to perform specific function

Organ system - a group of organs working together to perform specific functions

Organisms - a group of organ system working together

2.2 Animal tissues, organs and organ systems

2.2.1 The human digestive system

Balanced diet - right amount of nutrients & energy for needs For more help, please visit our website www.exampaperspractice.co.uk

Organisation

What is the function of digestive system?

Mouth	How can mouth break down starchy foods?
	Teeth break down food
	Saliva contains amylase
Salivary gland	Produce saliva containing amylase
Oesophagus	Muscular tube which move food to stomach
Stomach	 Pummels food with muscular wall Produce protease, pepsin & HCl Gastric juice Water to moisten food HCl (pH2) to kill bacteria & help protease to work Pepsin to break proteins into amino acid Mucus to lubricate surface & protect from digestive enzyme & HCl
Bile (alkaline)	 Made in liver & store in gall bladder Neutralise HCl from stomach to provide alkaline condition Emulsifies fats to break large lipid droplets into small droplets to ↑SA to ↑rate of fat breakdown by lipase
Small intestine	 Digestion completed Absorb digested food & nutrients to blood Small molecules diffuse through villi walls into blood for respiration
	 Adaptation Small intestine is very long, which gives plenty of time to complete absorption Villi are covered with microvilli, which increases SA to absorb quicker Villi contain blood capillaries, which provide rich blood supply to maintain a steep concentration gradient to assist quick absorption Villi have thin walls for short diffusion pathways into blood Have lots of mitochondria to provide energy from respiration Coeliac disease Damage villi ↓SA for absorption ↓ amino acid & glucose absorb ↓ amino acid available to build new tissues
Large	 ↓ glucose ↓ energy transfer from respiration Absorb excess water from blood
intestine	Form faeces
Rectum	Store faeces

Food chemistry

Carbohydrates	
Use	Provide energy for metabolic reactions in cells in cellular respiration
Digestion	 Starch → amylase → maltose + simple sugars

GCSE/IGCSE Biology notes		Organisation
Made in	Salivary glands, pancreas & small intestine	
Digestion sites	Mouth & small intestine	

Proteins

Use	Build new tissues & cellsBasis of cell enzymes
Digestion	• protein \rightarrow proteases \rightarrow amino acids
Made in	Stomach, pancreas & small intestine
Digestion sites	Stomach & small intestine

Lipids

Use	To provide energy & insulationForms part of cell membrane
Digestion	• Lipids \rightarrow lipases \rightarrow fatty acids + glycerol
Made in	Pancreas & small intestine
Digestion sites	Small intestine

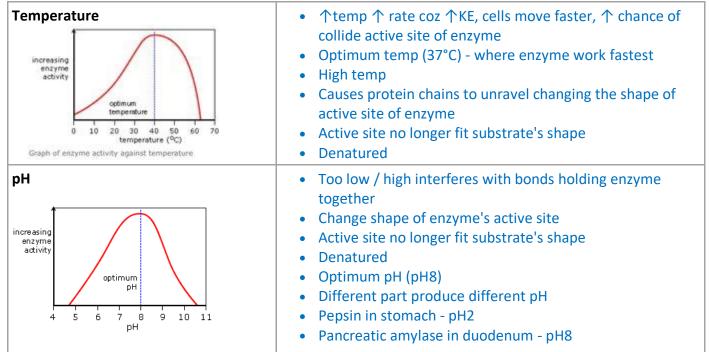
Biochemical test

Starch	Iodine solution (orange)	+ve black/blue -ve orange
Glucose	Benedict's solution (blue) Boil 2 mins	+ve orange -ve blue
Protein	Biuret's solution (blue) Shake	+ve purple -ve blue
Lipids	Ethanol Shake	+ve cloudy -ve clear

Enzyme

What are enzymes?

• Biological catalysts with a specific active site that increases rate of reaction


How do enzymes work?

'Lock & key theory'

- Enzyme acts as lock, substrate acts as key
- Shape of substrate collides with active site of enzyme, which has a complementary shape to substrate
- If substrate fits into active site, they binds together, reaction happens quickly & substrate splits into products to be released
- After reaction, products leave active site & enzyme is ready to used again

Factors that affect the rate of reaction

Calculation

Rate of reaction = $\frac{\text{amount of produced formed or reactant used}}{time}$

2.2.2 The heart and blood vessels

Blood vessels

Arteries

Function	Transport oxygenated blood under high pressure from heart to organs of body
Adaptation	 Thick walls - withstand high pressure Thick layers of elastic tissue - stretch & return to original shape Thick layer of muscle - maintain force on blood flow

Veins

Function	 Transport deoxygenated blood under high pressure from organs of body to heart Low pressure coz long way & more friction reduces speed
Adaptation	 Thin walls coz low pressure Large lumen help blood flow despite low pressure Have valves that close to prevent backflow of blood

Capillaries

Function	Transport blood to cells
----------	--------------------------

GCSE/	/IGCSE Biology notes Organisation
	 Form huge network of tiny vessels linking arties & veins
Adaptation	 Thin permeable walls (1 cell thick) for short diffusion pathway Substances eg O2 to diffuse easily out of blood into cell Waste eg CO2 produced by cells diffuse easily into blood Narrow so blood cells pass through them one by one so more O2 released to tissues 8 taken up from lungs, more time available, shorter distance for exchange, more SA exposed

Calculation

Rate of Blood Flow = $\frac{\text{Volume of Blood}}{\text{Number of Minutes}}$

2.2.3 Blood

Blood - a tissue consisting of plasma, in which the red blood cells, white blood cells & platelets are suspended

Blood contains...

Red blood cell

Function	Transport oxygen from lungs to all cells in body
Adaptation	 Biconcave discs - increase SA to vol ratio for diffusion No nucleus - more space for haemoglobin & O2 Contain red pigment - haemoglobin In lungs, combines with O2 to form oxyhaemoglobin In body tissues, oxyhaemoglobin splits up into haemoglobin & O2 to release O2 to cell Small & flexible to fit through narrow blood vessals

White blood cell

Function	(See immune system)		
	Defend body from infection by phagocytosis, produce antibodies & antitoxins		
Adaptation	Have a nucleus to encode instructions for WBC to do their job		

Platelets

• Sm	Small fragments of cells produce by giant cells in bone marrow, don't have nucleus			
Function	Help blood to clot at wound by holding cells together to stop bleeding & microorganisms getting in			
How?	Produce protein fibre o capture RBC & platelets to form clot, which plugs wound			

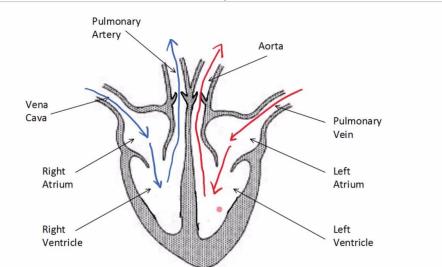
Plasma - yellow liquid

Function	Transport blood cells & different substances around body
	RBC, WBC & platelets
	Nutrients eg glucose & amino acid
	CO2 from organs to lungs
	Urea from liver to kidney
	Hormones
	Antibodies & antitoxins produced by WBC

Organisation

Uses of donated blood in medicine

- Replace blood lost from injury
- Given platelets to help clotting


Risk

- If different blood type, immune system reject blood & patient could die
- Diseases can be transmitted through blood

2.2.4 Coronary heart disease: a non-communicable disease

Heart

- An organ that pumps blood around the body in a double circulatory system
- **Right ventricle** pumps blood to lungs where gas exchange takes place
- Left ventricle pumps blood around the rest of the body

Aorta	Transport oxygenated blood under high pressure away from left ventricle of heart	
Vena cava	Return deoxygenated blood from the body to right atrium of heart	
Pulmonary artery	Transport deoxygenated blood from the heart to the lungs	
Pulmonary vein	Transport oxygenated blood from the lungs to the heart	
Valves	Close to prevent backflow of blood	
Deoxygenated blood (right)	 Organs → vein → vena cava → right atrium → right ventricle → pulmonary artery → lungs 	
Oxygenated blood (left)	• Lungs \rightarrow pulmonary vein \rightarrow left atrium \rightarrow left ventricle \rightarrow aorta \rightarrow artery \rightarrow organs	
Coronary arteries	 Branch off aorta, surround heart Carry blood to heart Supply O2 & nutrients for heart to function If narrow/blocked - coronary heart disease 	

Why is muscle wall thicker on left ventricle?

Organisation

Allow left ventricle to develop pressure needed to force blood through arterial system all over body

Double Circulation

- Blood enters heart twice for one circuit around the body
- Efficient, pressure stay high so blood flows quickly

How is natural resting heart rate controlled?

• By a group of cells located in the right atrium that act as a pacemaker

Artificial pacemaker

• Electrical devices used to correct irregularities in the heart rate by sending electrical signals to heart

Cardiovascular diseases

Why do ppl have coronary heart disease eg cardiovascular diseases? (4)

- Layers of fatty material build up inside coronary arteries
- Narrow arteries
- Reduce blood flow
- Reduce O₂ supply for heart muscles

What symptoms do coronary heart disease have? (3)

• Pain, heart attack, fatal

What are the risk factors of cardiovascular diseases?

• Poor diet, smoking, lack of exercise

What are the treatments for coronary heart disease? (6)

Stents	Statins	
 Keep coronary arteries open Increase blood flow More O2 supply for heart muscles How? Metal mesh with balloon inside 	Reduce blood cholesterol levels Slows down rate of fatty material deposit Reduce risk of develop heart attack Advantages Reduce risk of Produce side	
 Balloon inflated to open stent & blood vessel Balloon deflated & removed but stent remains in place 	heart attackIncrease levels of HDL	effects eg liver problems • Need to take
AdvantagesDisadvantages• Effective in lower risk of heart attack• Risk of heart attack or infection during operation• Quick recovery time from surgery• Risk of blood clots form near stent	cholesterol	statins continuously

Faulty heart valves

Why do ppl have faulty heart valves? (3)

• Faulty heart valves prevent valve from opening fully

- Heart valves develop a leak
- Become breathless

What are the treatments for faulty heart valves? (6)

Biological valve • Valves taken from animals Advantages Disadvantages		Mechanical valve		
		Made of titanium/polymers		
		Advantages	Disadvantages	
 No medication Low risk of blood clot 	Last for 10- 20yearsExpensive	Last a lifetimeCheap	 Increase risk of blood clots Take anticlotting drugs everyday for the rest of their life 	

Heart failure

Why do ppl have heart failure? (1)

- Heart can't pump enough blood around body
- What are the treatments for heart failure? (6)

Heart transplant		Artificial heart	
Advantages Disadvantages • Only solution • Hazards of • Datter life • encertion		Keep patients alive transplant Allow heart to rest Advantages	C C
Better life quality after transplant	operationShortage of donors	Won't reject by immune system Readily available	 Increase risk of blood clots Increase risk of infection while operation

2.2.5 Health issues

Define health (1)

• State of physical & mental well-being

Define communicable disease (1)

• Caused by pathogens that can be passed from one person to another

Define non-communicable diseases (1)

- Cannot spread from one person to another
 - For more help, please visit our website www.exampaperspractice.co.uk

Organisation

Organisation

What causes ill health? (5)

- Communicable & non-communicable diseases
- Diet, stress & life situation eg accessibility to medical attention

Different types of diseases may interact

- **Defects in immune system** more likely to suffer from infectious diseases
- Viruses living in cells trigger for cancers
- Immune reaction initially caused by pathogen trigger allergies eg skin rashes & asthma
- Severe physical ill health metal illness eg depression

2.2.6 The effect of lifestyle on some non-communicable diseases

What are the effects of smoking? (4)

- Cardiovascular diseases damage arteries lining, raise blood pressure, increase cholesterol
- Emphysema (lung diseases) damage bronchioles & alveoli shortness of breath
- Lung cancer carcinogen causes mutation & uncontrolled growth of cells, damage cell lining in lungs
- Chemicals in smoke damage cilia cause mucus production to increase cause shortness of breath & increases risk of infection
- Reduce O₂ supply for unborn babies cause health issues/death

Explain how a foetus may be affected if a mother smokes during pregnancy

The cigarette smoke will contain carbon monoxide which occupies the mothers red blood cells and so reduces the amount of oxygen that the mothers blood contains. This means that the foetus receives less oxygen which reduces the rate of respiration in the foetus which causes the birth mass of the baby to be less.

What are the effects of alcohol? (3)

- Liver disease damage liver cells when liver break down alcohol
- Affect brain function damage nerve cells
- Damage unborn babies' cells affect development & cause health issues

Why are carcinogens, including ionising radiation, risk factors in cancer? (2)

- Damage cell's DNA
- Makes cell divide uncontrollably

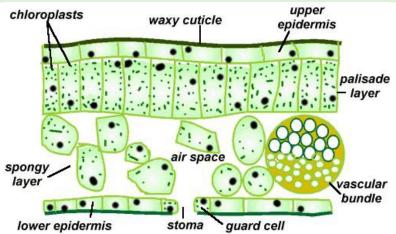
2.2.7 Cancer

Define cancer (1)

- Changes in cells that lead to uncontrolled growth & division
- Form tumour

Types of tumours

Benign tumours	Malignant tumours
Growths of abnormal cells	Growths of abnormal cells


- Contained in one area, usually within membrane
- Do not invade other parts of body, not cancerous

Organisation

- Cells split up, invade neighbouring tissues & spread to other organs through blood
- Form secondary tumours in other organs

2.3 Plant tissues, organs and systems

2.3.1 Plant tissues

Waxy cuticle	 Reduce water loss by evaporation So it doesn't wilt
Upper epidermis	 Cover the leaf Root hair cell Adapt to absorb water by osmosis & mineral ions by active transport from soil efficiently
Palisade mesophyll	 Chloroplast - absorb light for photosynthesis Close towards upper surface of leaf, packed with chloroplasts & are arranged closely together
Spongy mesophyll	 Air space - CO₂ in, O₂ out (gas exchange) Cells packed loosely to allow gaps between cells Cells are covered by a thin layer of water which gases dissolve in
Xylem	 Transport water & mineral ions from root to stems & leaves Have strong lignin spirals which allow them to withstand water pressure to transport water in transpiration stream & support plant stem

GCSE/IGCSE Biology notes		Organisation	
	 Cell die & form long hallow tube which is strengthened by lignin spirals allow water & mineral ions to move up easily 		
Phloem	 Transport dissolved sugar through translocation from leaves to rest of plant for immediate use or storage Cell walls between cells break down to form sieve plates - allow water carrying dissolved food move freely up & down tube to where it's needed Companion cells keep them alive & contain mitochondria to provide energy to move dissolved food up & down plant 		
Guard cells / Stomata	Small pores on the underside of the leaf that control gas exchange & water loss by diffusion		
	High light intensity	High temp	
	 Guard cells swell & cause stomata to open CO2 diffuse into leaf for photosynthesis 	Close stomata to reduce water loss by transpiration	
Lower epidermis			

Why more stomata on lower surface of leaf? (3)

- Cooler & more humid around lower surface
- Less water evapourate so won't wilt •

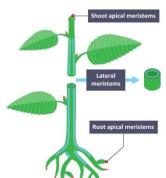
Meristem tissue

Define meristems in plants.

- Plant stem cells that can differentiate into • specialised cells throughout the life of the plant
- Found at growing tips of shoots & roots

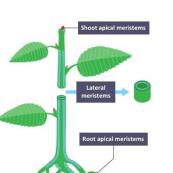
What can plant stem cells be used for?

They can be used to make clones of plants • quickly & economically

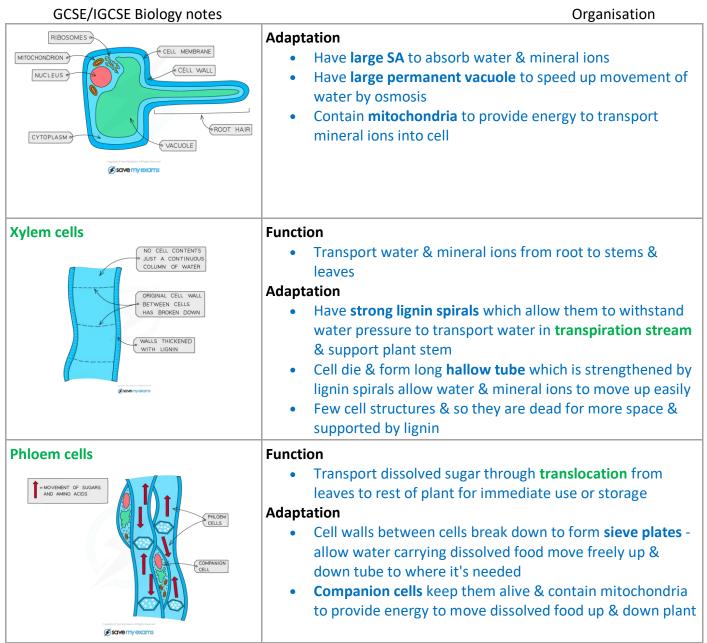


- Differentiate into any type of plant cell, throughout life of plant
- Used to produce clones of plant quickly & economically
- Protect rare species from extinction •

2 2 2 Plant organ system


To produce large no of identical plants for farmers eg disease resistance crops •

Root hair cells	Function	
	 To absorb water by osmosis & mineral ions by active transport from soil efficiently 	



Euter an interfacentia	
Causes secondary growth	
(i.e. widening of plant)	
Occurs at the cambium	
Produces bark on trees	

Transpiration

Define transpiration (2)

- Water loss from plant by evaporation
- The transport of water through the xylem from root to leaf, doesn't require energy

Define transpiration stream (2)

Movement of water from roots to leaves through xylem

How do water move from roots to leaves? (2)

By transpiration stream in xylem

Describe the process of transpiration (4)

1. Water evaporates from leaves through stomata, causing a pull

Organisation

2. Water from soil moves up through roots → stem → leaves by osmosis as transpiration stream in xylem to replace water loss

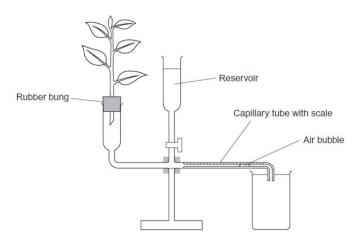
What factors & explain how these factors affect the rate of transpiration (4)

- \uparrow temp & air movement, \downarrow humidity \uparrow evaporation from cell surfaces
- \uparrow light intensity \uparrow rate of photosynthesis
- ↑ rate
- 20. What happens to the rate of transpiration if temperature is increased and why?
- 21. What happens to rate of transpiration if humidity decreases and why?

22. What happens to the rate of transpiration if air

23. What happens to the rate of transpiration if light

movement increases and why?


intensity increases and why?

- It increases because there is increased evaporation from cell surfaces and the rate of diffusion of water molecules from the lead is increased.
 It increased the increased by midite demonstration.
- It decreases. The increased humidity decreases the concentration gradient between water in the leaf and water in the air and so rate of diffusion of water from the leaf decreases.
- It increases. The air flow removes water vapour from leaf surfaces and so more water diffuses from the leaf.
- 23. It increases. The light intensity increases the rate of photosynthesis and so stomata open so there is increased diffusion of water out of the leaf.

Potometer

- Estimates transpiration rate by measuring water uptake
- Assume water uptake is directly related to water loss of leaves

Method

- 1. Cut a shoot underwater to prevent air entering xylem
- 2. Fill potometer with water & make sure there's no air bubbles
- 3. Insert shoot to potometer using rubber tube under water
- 4. Remove potometer from water & seal joints with Vaseline
- 5. Dry leaves coz moisture on leaves will affect transpiration rate
- 6. Remove capillary tube from beaker of water to allow an air bubble introduced into capillary tube & place tube back into water
- 7. Allow plant to adapt to new environment for 5 mins
- 8. Record starting location of air bubble
- 9. Leave for set period of time eg 1 min
- 10. Record end location of air bubble
- 11. Calculate rate of transpiration = $\frac{\pi r^2 l}{time}$
 - r = radius of capillary tube

Organisation

- I = distance moved by air bubble
- 12. Measure rate for 3 times & calculate mean
- 13. Once air bubble near junction of reservoir, open tap to add water from reservoir to push air bubble to start of capillary tube
- 14. Repeat experiment with one different variable eg temp / species
- Further bubble travels in same time period, faster transpiration rate

Describe how student return air bubble to start of capillary tube? (1)

• Open tap to add water from reservoir

Give 2 precautions when setting up potometer to obtain reliable measurements of water uptake by plant shoot (2)

- Ensure airtight & watertight
- Cut shoot under water prevent air entering xylem
- Cut shoot at a slant

Student assumed water uptake was equivalent to transpiration rate. Why this might not be a valid assumption? (2)

- Water used in photosynthesis
- Water used to provide support
- Apparatus not sealed

Why repeat experiment? (1)

• Improve reliability / identify anomalous result

5 (d) The students' results are shown in the table.

Number of leaves removed from the plant shoot	Mean rate of water uptake/ cm ³ per minute
0	0.10
2	0.08
4	0.04
6	0.02
8	0.01

Explain the relationship between the number of leaves removed from the plant shoot and the mean rate of water uptake. (3)

I no. of leaves, I SA, I stomata, I transpiration, I cohesion

Translocation

• Transport of dissolved sugar from leaves to rest of plant through phloem both upwards & downwards for immediate use or storage, requires energy

Why is it important?

• Sugar made in leaves need to move to other part of plant for growth