

Bonding, structure, and the properties of matter

Topic 2 – Bonding, structure, and the properties of matter

Table of Content

2.1 Chemical bonds, ionic, covalent and metallic	2
2.1.1 Chemical bonds	2
2.1.2 Ionic bonding	2
2.1.3 Ionic compounds	3
2.1.4 Covalent bonding	3
2.1.5 Metallic bonding	5

2.2.1	The three states of matter	5
2.2.2	State symbols	6
2.2.3	Properties of ionic compounds	6
2.2.4	Properties of small molecules	6
2.2.5	Polymers	6
2.2.6	Giant covalent structures	7
2.2.7	Properties of metals and alloys	7
2.2.8	Metals as conductors	7

2.3 Structure and bonding of carbon7

2.3.1	Diamond7
2.3.2	Graphite7
2.3.3	Graphene and fullerenes7

	•	-		
2.4.1	Sizes of particles and	their prope	erties7	
2.4.2	Uses of nanoparticles		8	

2.1 Chemical bonds, ionic, covalent and metallic

2.1.1 Chemical bonds

(See 2.1.2-2.1.5 below)

2.1.2 Ionic bonding

Ionic bonding

- Transfer of electrons between metal & non-metal
- Electrostatic force of attraction in all directions between oppositely charged ions
- Occurs in ionic compound
- Produce giant ionic lattice

Properties of ionic compounds

Properties	Reasons
High melting & boiling points	Requires lots of energy to break large no of strong electrostatic force of attraction between oppositely charged ions
Have regular structure (Giant ionic lattice)	Strong electrostatic force of attraction in all directions between oppositely charged ions
When melted/dissolved in water - conduct electricity	Ions are free to move & so charge can flow
When solid - doesn't conduct electricity	Ions in fixed positions

Ways of showing ionic bonding & limitations

Dot & cross diagram

Advantages	Disadvantages
 Useful for illustrating transfer of electron Indicates from which atom the bonding electrons come from 	 X illustrate 3D arrangements of atoms & electron shells X indicate relative sizes of atoms

Ball and stick model

	Key ● Na ⁺ ○ Cl ⁻
Advantages	Disadvantages

Ronding structure and the properties of matter

GCSE/IGCSE Chemistry notes			Bonding, structure, and the properties of matter	
•	Useful for illustrating 3D arrangement of atoms in space	•	Atoms aren't solid sphere Sticks represent bonds but there's no physical	
•	Useful for visulising shape of molecule	•	bond but electrostatic force of attraction Atoms are placed far apart from each other but in	
		•	reality the gaps between atoms are much smaller X indicate movement of electrons	

2D diagrams

Advantages	Disadvantages
 Displayed formulae are 2D representations and are basically simpler versions of the ball and stick model Adequately indicate what atoms are in a molecule and how they are connected 	 X illustrate the relative sizes of the atoms and bonds X give you an idea of the shape of a molecule and what it looks like in 3D space Atoms are placed far apart from each other but in reality the gaps between atoms are much smaller

3D diagrams

A	dvantages	Dis	sadvantages
•	3D drawings and models depict the arrangement in space of the ions Show the repeating pattern in giant lattice structures	•	Only illustrate the outermost layer of the compound Difficult and time consuming to draw

2.1.3 Ionic compounds

(See 2.1.2 Ionic bonding)

2.1.4 Covalent bonding

Covalent bonding

- Sharing of pair of electrons between non-metal atoms •
- Electrostatic force of attraction between +ve nucleus & pair of -ve electrons •
- Occurs in covalent compound •
- Produce simple molecular compounds or giant covalent structure •

and/or

××

Ν

×0 H ŏн

For ammonia (NH₃)

Bonding, structure, and the properties of matter and/or and/or

Simple molecular compounds

Fullerenes	• Molecules of carbon atoms with	Properties
1 Alexandre	hollow shapes	Low melting point
	Hexagonal rings of carbon	X conduct electricity
	atoms but may also contain	• Soft, brittle & lubricant - shape like ball -
	rings with 5 or 7 carbon atoms	roll
	• 1 st fullerene -	Uses
	Buckminsterfullerene (C ₆₀) - has	Drug delivery
	spherical shape	Lubricants
Carbon nanotubes	Long cylindrical fullerenes	Properties
COS STORM		• Strong - high length to diameter ratios
7-25-23 6 6 6 1		Conduct electricity
Q-0000		Uses
000		• Reinforce composite materials eg tennis
- C.S.		rackets - high tensile strength

Properties

Properties	Reasons
Low melting & boiling point	Weak intermolecular forces between molecules - easy to break
X conduct electricity	X free electrons

Giant covalent structure

Diamond • = carbon atom strong bonds	• Each carbon bond to 4 other carbons covalently - <u>hard</u>	 Properties High melting point X conduct electricity Hard & strong Insoluble in water Uses Cutting tools
Graphite	 Each carbon bond to 3 other carbons covalently Form layers of hexagonal rings which have no covalent bonds between layers 	 Properties High melting point Conduct electricity - 1 electron from each carbon atom is delocalised Soft, brittle & slippery - weak (intermolecular) forces between layers - easy to break - layers can slide over each other Uses

Bonding, structure, and the properties of matter

		Electrodes, pencils, lubricant
Graphene • = carbon atom	• Single layer of graphite	 Properties High melting point Conduct electricity Strong - atoms within layers are tightly bonded covalently - lots of energy to break Use In electronics, composites
Silicon dioxide (silica) SiO ₂ • Oxygen atom • Silicon atom	 Each silicon bond to 4 O₂ covalently Each O₂ bond to 2 silicon covalently 	 Properties High melting & boiling point X conduct electricity Hard

2.1.5 Metallic bonding

Metallic bonding

- Bonding of metal atoms to form solid
- Strong electrostatic attraction between closely packed +ve metal ions & sea of delocalised electrons
- Produce giant metallic structure
- Arranged in regular pattern

Properties

Properties	Reasons	
High melting & boiling pt		
Conduct electricity & thermal energy	(See above for reasons)	
Bend (ductile) & change shape (malleable)		

Alloys

- Mixture of 2 or more different types of metals
- Not malleable/ductile, hard different size of atoms disrupt structure harder to slide harder than pure metal

Smart alloys - return to original shape

2.2 How bonding and structure are related to the properties of substances

2.2.1 The three states of matter

Properties of Solids, Liquids and Gases					
Solid	Liquid	Gas			

State Changes

States of matter can be represented using a model called particle theory. How are particles represented in this model? (1)

• Small solid spheres

- Explain the limitations of particle theory (2)
 - Doesn't show forces between particles
 - Particles are not solid spheres

Particle theory can be used to explain changes of state.

Using particle theory, explain how a substance changes from a liquid to a gas when it is heated. (3)

- When a liquid is heated, particles gain KE & move faster
- Weakens bonds holding liquid tgt
- At certain temp, particles have sufficient energy to break bonds
- Liquid becomes gas

2.2.2 State symbols

Solid (s), Liquid (l), Gas (g), Aqueous solution (aq)

2.2.3 Properties of ionic compounds

(See 2.1.2 Ionic bonding)

2.2.4 Properties of small molecules

(See 2.1.4 Covalent bonding)

2.2.5 Polymers

• Long chain molecule made from joining many short molecules (monomers) together

For more help, please visit our website www.exampaperspractice.co.uk

Bonding, structure, and the properties of matter

- Strong intermolecular force hard to break solid at room temp
- Different polymers, different properties, different uses

Thermosoftening polymer	Thermosetting polymer	
	» » » » » » » » » » » » » » » » » » »	
Contain long polymer chains	Contain long polymer chains	
 Chains are not joined tgt (but are tangled up with each other) Low melting point - soften and then melt when 	 Chains are joined by covalent bonds High melting point - do not soften or melt when heated 	

• Low melting point - soften and then melt when heated

2.2.6 Giant covalent structures

(See 2.1.4 Covalent bonding)

2.2.7 Properties of metals and alloys

(See 2.1.5 Metallic bonding)

2.2.8 Metals as conductors

(See 2.1.5 Metallic bonding)

2.3 Structure and bonding of carbon

- 2.3.1 Diamond
- 2.3.2 Graphite

2.3.3 Graphene and fullerenes

(See 2.1.4 Covalent bonding)

2.4 Bulk and surface properties of matter including nanoparticles (chemistry only)

2.4.1 Sizes of particles and their properties

Nanoparticles

- 1-100nm in size, a few hundred atoms thick
- High SA:vol ratio
- Smaller than fine particles (PM_{2.5}) diameters between 100-2500nm (1×10⁻⁷-2.5×10⁻⁶m)
- Coarse particles (PM₁₀) diameters between 1×10⁻⁵-2.5×10⁻⁶m often referred to as dust

Why good?

• Stronger, harder, high SA:V ratio, very small - fit in small gaps

Bonding, structure, and the properties of matter

2.4.2 Uses of nanoparticles

Uses

- Catalyst for fuel large SA:V ratio
- Drug delivery tiny, absorb easily by body
- Sun cream better skin coverage, more effective protection from UV rays

Problems

- Potential cell damage in body
- Harmful effects on environment

Suggest why using nanoparticles is good for environment? (2)

- Tennis ball last longer (coz keep it hard)
- Less tennis ball needed to make
- Less material/energy used, pollution caused, waste

Suggest and explain why use of nanosized catalyst particles reduce cost of catalytic converter. (3)

- 1-100nm in size
- Large SA
- Less catalyst needed