

Topic 1 – Atomic structure and the periodic table

Table of Content

1.1	A simple model of the atom, symbols, relative atomic	
ma	s, electronic charge and isotopes	2
1.1	1 Atoms, elements and compounds	2
1.1	2 Mixtures	2
1.1	3 The development of the model of the atom	3
1.1	4 Relative electrical charges of subatomic particles	4
1.1	5 Size and mass of atoms	4
1.1	5 Relative atomic mass	4
1.1	7 Electronic structure	5
1.2	The periodic table	5
1.2	1 The periodic table	6
1.2	2 Development of the periodic table	6
1.2	3 Metals and non-metals	6
1.2	4 Group 0 (Noble gases)	7
1.2	5 Group 1 (Alkali metals)	7
1.2	6 Group 7 (Halogens)	8
1.3	Properties of transition metals (chemistry only)	9
1.3	1 Comparison with Group 1 elements	9
1.3	2 Typical properties (transition metals)	9

1.3.2 Typical properties (transition metals)	9
Others - lons	

Atomic structure and the periodic table

1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes

1.1.1 Atoms, elements and compounds

Atom – smallest part of an element that can exist Element

- Substance made of 1 type of atom
- Cannot be broken down chemically into simpler substance

Compound

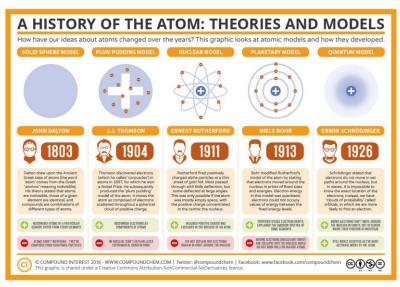
- 2 or more elements chemically bonded in fixed properties
- Form / separate by chemical reactions

Molecules – collection of 2 or more atoms chemically bonded by covalent bonds

1.1.2 Mixtures

Mixture

- 2 or more elements / compounds not chemically bonded tgt
- Separated by physical processes
 - Not involved chemical reactions
 - $\circ \quad \text{No new substances made} \\$


Separation techniques

Simple distillation	•	Separates a liquid from a solution	2.	Heat mixture until it boils & evaporates into water vapour Water vapour rises up & passes through condenser As condenser is cold, water vapour condenses back to water, which is collected in the flask
Fractional distillation	•	Separates 2 liquids with similar boiling pt & are miscible	 2. 3. 4. 5. 6. 7. 8. 9. 10. 	Heat mixture Liquid with lower melting pt evapourates into vapour Vapour rises up & passes through fractionating column Vapour condenses back to water, which is collected in the flask Liquid with higher melting pt start evapourate Crude oil is heated & vaporised as it enters fractional distillation column Shorter chain lengths have weaker intermolecular forces & lower boiling pt This means they will condense at top of column where it's cooler Longer chain lengths have stronger intermolecular forces & higher boiling pt This means they will condense at bottom of column where it's hotter This is due to different chains length of hydrocarbons having different boiling pt so they can be separated & tapped off at different levels as fractions

GCSE/IGCSE Cl		A PAPERS PRACTICE Atomic structure and the periodic table	
Filtration	 Separates an insoluble solid from a liquid 	 Pour solid and liquid mixture in filter funnel which contains filter papers Liquid goes through filer paper but solid does not 	
Crystallisation	Separate soluble solid from solution	 Pour acid into beaker Gently heat acid with Bunsen Burner till almost boiling Add base to acid one spatula at a time & stir at the same time till base is in excess Filter excess base using filter paper & funnel Pour solution into evaporating basin Heat gently over beaker of boiling water till half of solution remains Leave to cool and crystallise Pat dry using filter paper 	
Chromatography	Separate mixtures & give info to help identify substance	 Draw a pencil line on the paper. Place ink on the baseline in a dot. Place the paper into the beaker which has water in it. Make sure the baseline is above water level, so dye doesn't dissolve in water. Hang paper over edge of beaker to keep it right. Put a lid on. Wait for solvent to go up paper near the top. Remove paper & let it dry. Draw circles around spots. 	

1.1.3 The development of the model of the atom

- 1. John Dalton tiny hard sphere & indivisible
- 2. JJ Tomson 'Plum Puddy Model' Experiment

• Apply high voltages to gases at low pressure on beams of particles

- Results
- Attract on +ve charge
- Show atom contains -ve charged particles (electrons)

Atomic structure and the periodic table

- -ve charged e⁻ embedded in a cloud of +ve charge \rightarrow atom is neutral
- 3. Rutherford 'Alpha Particle Scattering Experiment'

Experiment

• Fired +ve alpha particle beams on extremely thin gold foil

Results

- a) Straight through \rightarrow most atom is empty spaced
- b) Slightly deflected \rightarrow nucleus is +ve charged
- c) Deflected by >90° \rightarrow nucleus is +ve charged
- +ve nucleus concentrate mass of atom at centre of atom
- -ve e⁻ exist in cloud around nucleus
- 4. Neil Bohr 'Nuclear Model'

Experiment

• Notice light given out when atoms were heated only had specific amount of energy **Results**

• e- orbit nucleus in specific energy levels at specific distances with nothing in between

5. James Chadwick – proved neutrons existed in nucleus in 1932

1.1.4 Relative electrical charges of subatomic particles

1.1.5 Size and mass of atoms

Name of particle	Relative mass	Electric charge
Proton	1	+1
Neutron	1	0
Electron	0 or $\frac{1}{1836}$	-1

Why doesn't an atom have charge?

- Relative electrical charge
 - Electrons: -1, protons :+1
- No of electrons = no of protons

Atom radius = 0.1nm (1 × 10⁻¹⁰m) Nucleus radius = $\frac{1}{10000}$ of an atom (1 × 10⁻¹⁴m)

		•
Formulae No of neutrons = mass no – atomic no = 23-11 = 12	23 Na	relative atomic mass atomic symbol
Atomic no = no of protons = 11 Mass no = protons + neutrons	sodium 11	atomic (proton) number

1.1.6 Relative atomic mass

sum of (isotope adundance × isotope mass no)

Relative atomic mass = -

100 (total no at atoms)

Kev

High relative atom mass

- Less waste products
- Less pollutants

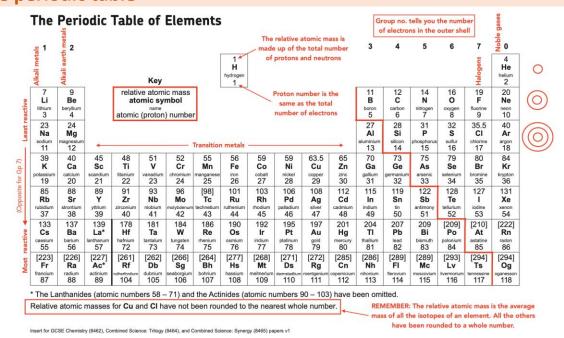
1.1.7 Electronic structure

Structure of atom	region o	f space where there's probability of finding an
	X electron electron	
shell	proton nu	deus mass concentrated
empty — space	100000	mass concentrated at centre f atom

Explain why fluorine and chlorine are in the same group of the period table. Give the electronic structures of fluorine and chlorine in your explanation. (2)

- Isotope is different forms of the same element, which have the same no of protons but different no of neutrons
- The electronic structure of fluorine is 2,7 and chlorine is 2,8,7
- F & CI both has 7e- in outer shell

Explain why ${}^{12}_{6}C$ and ${}^{14}_{6}C$ are isotopes of carbon. You should refer to the numbers of sub-atomic particles in the nucleus of each isotope. (3)


- Isotope is different forms of the same element, which have the same no of protons but different no of neutrons
- They both have 6 protons
- 12C has 6 neutrons, 14C has 8 protons

1.2 The periodic table

Atomic structure and the periodic table

GCSE/IGCSE Chemistry notes 1.2.1 The periodic table

Arrangement – order of increasing atomic no

• Elements with similar properties are in columns, aka groups

Why is the table called periodic table?

• Similar properties occur at regular intervals

Why are the elements in the same group?

- Same no of e- on outer shell
- Similar chemical & physical properties

1.2.2 Development of the periodic table

1. Antoine Lavoisier - has compounds

2. John Newlands

- Arranged strictly in octaves by atomic weights (but no chemical properties)
- Realised every 8th element reacts in similar way 'Law of octaves'

3. Dimitri Mendeleev

- Arranged in order of atomic mass but changed some order base on atomic weight
 - Isotopes proved correct
- Left gaps for elements that he though hadn't been discovered

Why Mendeleev left gaps?

- For undiscovered elements so elements with similar properties can be placed tgt / pattern fit
- Predicted properties of missing elements

Later on, elements discovered properties matches predictions

4. Modern – organized in atomic no

1.2.3 Metals and non-metals

Properties

Atomic structure and the periodic table

Metals (+ve ions)	Non-metals (-ve ions)	
 High melting points 	Low melting points	
High density	Low density	
Conduct electricity	Electrical insulator	
Shinny, malleable, sonorous	Dull, brittle	

1.2.4 Group 0 (Noble gases)

Properties

- Non-metal
- Colorless gases, low melting point, low density, not flammable

Why are elements in group 0 unreactive & don't form molecules easily? (1)

• Have full & stable outer shell

Why does the boiling point increase down the group? (3)

- \uparrow no of shell / size of atom
- Intermolecular force between atom become stronger
- Need more energy to overcome force

1.2.5 Group 1 (Alkali metals)

- Metals
- Soft, low melting point, less dense (so top 3 elements float on water)
- +1 ion \rightarrow lose e- \rightarrow form ionic compound
 - White solids, dissolve in water, form colourless solutions

Reaction with oxygen

$Metal_{(s)} + oxygen_{(g)} \rightarrow metal oxide_{(s)}$

Metal	Equation	Flame colour
Lithium	Lithium + oxygen \rightarrow lithium oxide 4Li + O ₂ \rightarrow 2Li ₂ O	Crimson red
Sodium	Sodium + oxygen → sodium oxide 4Na + O ₂ → 2Na ₂ O	Yellow
Potassium	Potassium + oxygen \rightarrow potassium oxide 4K + O ₂ \rightarrow 2K ₂ O	Lilac

Reaction with chloride

- Exothermic reaction
- Form ionic salt

$Metal_{(s)} + chlorine_{(g)} \rightarrow metal chloride_{(s)}$

Metal	Equation	
Lithium	Lithium + chlorine \rightarrow lithium chloride 2Li + Cl ₂ \rightarrow 2LiCl	
SodiumSodium + chlorine \rightarrow sodium chloride $2Na + Cl_2 \rightarrow 2NaCl$		

Atomic structure and the periodic table Potassium + chlorine \rightarrow potassium chloride Potassium $2K + Cl_2 \rightarrow 2KCl$

Reaction with water

 $Metal_{(s)} + water_{(l)} \rightarrow metal hydroxide_{(aq)} + hydrogen_{(g)}$

Metal	Equation	Observation
Lithium	Lithium + water → lithium hydroxide + hydrogen 2Li + 2H ₂ O → 2LiOH + H ₂	 Move around on surface Fizzes steadily Slowly becomes small till it disappears
Sodium	Sodium + water → sodium hydroxide + hydrogen 2Na + 2H ₂ O → 2NaOH + H ₂	 Move around on surface Melts to form a ball Fizzes rapidly Quickly becomes small till it disappears
Potassium	Potassium + water → potassium hydroxide + hydrogen 2K + 2H ₂ O → 2KOH + H ₂	 Move around on surface Quickly melts to form a ball Fizzes & burin violently with sparks & lilac flame Disappears rapidly

Why does the reactivity increase down the group? (4)

- ↑ no of shell •
- \uparrow electron shielding
- \downarrow attraction between +ve nucleus & -ve outer e-
- Outer e- requires less energy to remove
- Atom is more reactive

1.2.6 Group 7 (Halogens)

- Non-metals
- Consist of diatomic molecules (2 elements chemically combined using covalent bond)
- $-1 \text{ ion } \rightarrow \text{gain } e \rightarrow \text{fill outer shell } \rightarrow \text{stable}$
- Form molecular compounds with non-metallic elements
- Low melting point \rightarrow coz weak force between molecules
- Density, melting point increases down the group •

Why does the reactivity decrease down the group? (4)

- ↑ no of shell •
- \uparrow size \rightarrow e- further from nucleus •
- \uparrow electron shielding
- \downarrow attraction between +ve nucleus & -ve outer e-
- ↓ energy to attract e- to form -ve ion
- e- easily gained
- Atom is less reactive

Halogen	Appearance & state at room temp	Colour in water

GCSE/IGCSE Chemistry note	Atomic structure and the periodic table		
Fluorine	Yellow gas	-	
Chlorine	Pale yellow – green gas	Pale green	
Bromine	Red – brown liquid	Orange	
Iodine	Purple – black solid	Brown	

Displacement reaction

- More reactive displace less reactive elements
- F > Cl > Br > I
- More reactive(s) + compound(aq) → less reactive(s) + compound(aq)

	KI	KBr	КСІ
Cl ₂	Orange $2KI + CI_2 \rightarrow 2KCI + I_2$ $2I^- + CI_2 \rightarrow 2CI^- + I_2$	Pale yellow $2KBr + Cl_2 \rightarrow 2KCl + l_2$ $2Br^- + Cl_2 \rightarrow 2Cl^- + l_2$	×
Br ₂	Yellow orange $2KI + Br_2 \rightarrow 2KCI + I_2$ $2I^- + Br_2 \rightarrow 2CI^- + I_2$	×	Displaced (no reaction)
I ₂	×	Displaced (no reaction)	Displaced (no reaction)

1.3 Properties of transition metals (chemistry only)

1.3.1 Comparison with Group 1 elements

What are the physical differences between group 1 & transition elements? (3)

Group 1	Transition metals
Low melting point	High melting point
Low density	High density
• Soft	• Strong, hard

What are the chemical differences between group 1 & transition elements? (3)

Group 1	Transition metals
Very reactive	Low reactivity
 Not used as catalysts 	Used as catalysts
• Form colourless / white compound	Form coloured compound
Only form +1 ions	Ions with different charges

1.3.2 Typical properties (transition metals)

Properties

- High melting point, high density, strong, hard
- Low reactivity, used as catalysts, form coloured compound, ions with different charges

Uses as catalysts

• Manganese (IV) oxide increases decomposition of hydrogen peroxide to oxygen & water

- $\circ \quad 2H_2O_2 \rightarrow 2H_2O + O_2$
- Iron for Haber process makes ammonia

 N₂ + 3H₂ ⇒ 2NH₃
- Nickel for manufacture of margarine

Others - Ions

lons – a charged particle produced by loss / gain of mass

Positive ions		Negative ions		
Name	Formula	Name	Formula	
Hydrogen	H⁺	Chloride	CI ⁻	
Sodium	Na⁺	Bromide	Br ⁻	
Silver	Ag ⁺	Fluoride	F ⁻	
Potassium	K+	lodide	I ⁻	
Lithium	Li+	Hydroxide	OH-	
Ammonium	NH4 ⁺	Nitrate	NO ₃ ⁻	
Barium	Ba ²⁺	Oxide	0 ²⁻	
Calcium	Ca ²⁺	Sulfide	S ²⁻	
Copper(II)	Cu ²⁺	Sulfate	SO4 2-	
Magnesium	Mg ²⁺	Carbonate	CO32-	
Zinc	Zn ²⁺			
Lead	Pb ²⁺			
Iron(II)	Fe ²⁺			
Iron(III)	Fe ³⁺			
Aluminium	Al ³⁺			

Atomic structure and the periodic table