

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

Tool 3: Mathematics

IB Biology - Revision Notes

Applying General Mathematics in Biology

Applying General Mathematics in Biology

- Biology often requires the use of calculations, which can include
- Decimals
- Most biolo gical calculations use decimals, e.g.calculating the size of a bacterial cell
- Fractions
- Most scientific calculators will initially give answers as fractions
- Make sure you know where the S_{\Leftrightarrow} D button is so that you convert the fraction into a decimal
- Percentages
- There are many percentage calculations, including percentage change and percentage difference
- Ratios
- The most common ratio requiring understanding is that of surface area to volume ratio
- Proportions
- Proportio nality can be used to understand quantity and scale and is important in biology in topics such as cell biology when creating biological drawings of cells and tissues from a microscope image or micrograph
- Frequencies
- This is most commonlyused in understanding change in allele frequency
- Densities
- We oftenlook at and examine population density in ecologyorstomatal densityin plant biology
- Approximations
- This is used to obtain an approximate value for example when using the magnification formula
Reciprocals
- We frequently used reciprocals $(1 / n)$ when dealing with concentration versus rate graphs, using $1 / T$ where T is time

Measures of central tendency

- Measures of central tendency involve calculations of mean, median and mode which you should be able to apply to a range of scenarios and contexts
- Mean
- The mean is an average of a group of numbers calculated by totaling all values and dividing by the number of values
- Mean is used to summarise a dataset with a single number which represents the data's typical value
- Median
- This is the middle number which can be found by ordering all values and picking out the one in the middle
- It helps us to understand that 50% of values have are smaller or equal to the median and 50% of values are higher orequal to the median
- Mode
- This is the most frequent value in a dataset
- It can be us eful to understand the most common value in categorical data when the mean and median can't be used

Measures of dispersion

- Measures of dispersion involve applying calculations of standard deviation(SD), standard error (SE) and int erquart ile range (IQR) to a range of contexts
- These ideas are also considered here with reference to the use of errorbars on graph
- Standard Deviation
- The mean is a more informative statistic when it is provided alongside standard deviation
- Standard deviation measures the spread of data around the mean value
- It is very us eful when comparing consistencybetween different data sets
- The mean must be calculated before working out the standard deviation
- Standard Error
- Standard error of the mean measures how far the mean of the data is likely to be from the true mean
- It measures the accuracy with which a sample represents a population
- The SEis always smallerthan the SD
- Interquartile Range
- This is anothermethod of analysing dispersion of data
- It is the difference between the 75th and 25thpercentiles of the data
- Quartiles are the values that divide the whole series into four equal parts

Scientific notation

- Scientific notation is also known as standard form
- It is a system of writing and working with verylarge or very small numbers
- Numbers in scientific notation are written as:

$$
a \times 10^{n}
$$

- Theyfollow these rules:
- a is a number above 1 and below 10
- Forlarge numbers, \mathbf{n} is an integer that is greater than 0
- i.e It shows how manytimes a is multiplied by 10
- Forsmall numbers, \mathbf{n} is an integerthat is less than 0
- i.e It shows how manytimes a is divided by 10

Page 2 of 17

- $\mathrm{n}<0$ forsmall numbers i.e how manytimes a is divided by 10

Approximation and estimation

- Approximation and estimation are both methods used to obtain values that are close to the true or accurate values
- While they share some similarities, they have distinct characteristics and are used in different contexts

Approximation

- Approximation involves finding a value that is close to the actual value of a quantity
- It maynot necess arily be very precise or accurate
- It is often used when an exact calculation is challenging or time-consuming and a reasonably close value is sufficient

Estimation

- Estimation involves making an educated guess or assessment based on available information or data
- It is used when the true value of a quantity is unknown or cannot be directly measured
- For example biologists estimate dates of the first living cells and the last univers al common ancestor or the method of estimating times byuse of the "molecularclock"

Scales of magnification

- Magnification is an important skill used widely in biology and frequently assessed in examinations
- Formore information and worked examples see our revision note on microscope skills

Rates of change

- The rate of change tells us how something changes over time
- For example oxygen consumption in germinating seeds over a period of days
- To determine rates of change from tabulated data, you can use the average rate of change or gradient, if the data has been plotted as a graph
- The average rate of change between two points on a graph or in a table is:

$$
\text { Rate of change }=\frac{\text { Change in the dependent variable }}{\text { Change in the independent variable }}
$$

Proportionality and correlations

- There are a number of terms that are commonly applied to trends, particularly in graphs
- Direct and inverse proportio nality
- Direct proportionality applies to a trend that has a clearly linear relationship which means the relationship can be described as "when one variable increases, the other increases" or"ifxdoubles, thenydoubles"

Page 3 of 17

- Inverse proportionality means that the relationship can be described as "when one variable increases, the other decreases" or"if x doubles, then y halves"
- Positive and negative correlations
- Positive correlations show when the gradient of the graph is positive / slopes or curves upwards and describes a relationship where as xincreases, y also increases
- Negative correlations is when the gradient of the graph is negative / slopes or curves downwards; this describes a relationship where as xincreases, y decreases

Percentage change and percentage difference

- Percentage change and percentage difference are commonly used to express the relative change betweentwo values
- They are useful forcomparing experimental results, determining reactionyields and analysing other chemicaldata

Percentage change

- Percentage change is used to express the relative change between an initial value and a final value
- It is calculated using the following formula:

Percentage difference

- Percentage difference is used to compare two values to determine how much they differ from each other as a percentage
- It is calculated using the following formula

$$
\frac{\text { (Value } 1-\text { Value 2) }}{\text { Average value } 1 \text { and value } 2}
$$

Continuous and discrete data

- Discrete data is quantitative
- It consists of separate, distinct and countable values
- Forexample:
- Number of an organismin a sample
- Continuous data is also quantitative
- It is based on measurements and can include decimal numbers orfractions
- This allows for an infinite number of values
- Forexample:
- The temperature of an enzyme reaction as time progresses
- The volume of oxygen gas produced during a photo synthesis reaction

Statistical tests

Page 4 of 17

- Statistical tests can be used to analyse a range of different data sets
- The type of test used will depend on a number of factors such as
- The size of the sample
- Theytype of data, i.e.is it discrete orcontinuous
- The nature of the question being investigated

Simpson'sreciprocalindex

- The Simpson's reciprocal indexcan be used to measure the relative biodiversity of a given community
- It accounts forboth the number of species present (richness) and the number of individuals per species (evenness)
- A higher index value is indicative of a greater degree of bio diversity within the community The Lincoln index.
- This calculation allows an estimate of population sizes of individual animal species
- Youcanread more about the Lincoln Indexhere

Chi-squared test

- A chi-square test is a statistical test that is used to compare observed and expected results
- Our revisionnotes here coverthis in detail

The t-test

- Thet-test can be used to compare the means of two sets of data and determine whether they are significantly different ornot
- The sets of data must follow a rough normal distribution, be continuous and the standard deviations should be approximatelyequal

- Exam Tip

You will be provided with the formulae for the e statistic al tests in the exam, yourjob is to apply them to a range of contexts and data.

Exam Papers Practice

Using Units, Symbols \& Numerical Values in Biology

Using Appropriate Units

- The International System of Units (SI) is also called the metric system
- This is the international stand ard formeasurement
- There are several SIbase units that are used in science

SI Base Units Table

Quantity	SIbase unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	s
temperature	Kelvin	K
amount of substance	mole	mol
Ampere	A	
current	candela	cd
Practiceluminous intensity		mate\|

- Measurements of physical quantities can require verylarge and verysmall values, for example:
- The diameter of an atom is about $10^{-10} \mathrm{~m}$ or 0.0000000001 m
- One mole of a substance contains 6.02×10^{23} or 602000000000000000000000 particles
- Powers of ten are numbers that can be achieved by multiplying 10 times itself
- These come under two categories of units:
- Multiples e.g. $10^{2}, 10^{3}$
- Sub-multiples e.g. $10^{-1}, 10^{-2}$
- Each power often is defined by a prefix, the most common ones used in biology are listed in the table below

Table of common prefixes in biology

Page 6 of 17

Prefix	Abbreviation	Poweroften
kilo-	k	10^{3}
centi-	c	10^{-2}
milli-	m	10^{-3}
micro-	n	10^{-6}
nano-	n	10^{-9}

- It essential that the correct scientific measurements are used when discussing biolo gical experiments
- Ensure that the correct symbols are used in conjunction with the unit of measurement
- E.g. m^{3} forcubic metres

Units of Measurement Table

Measurement	Base unit	Symbol	Units used
Length	Metre	m	$\begin{gathered} 1000 \mathrm{~m}=1 \mathrm{~km} \\ 0.01 \mathrm{~m}=1 \mathrm{~cm} \\ 0.001 \mathrm{~m}=1 \mathrm{~mm} \\ 0.000001 \mathrm{~m}=1 \mu \mathrm{~m} \end{gathered}$
Volume	Cubic metre	m^{3}	$\begin{gathered} 10^{9} \mathrm{~m}^{3}=1 \mathrm{~km}^{3} \\ 0.000001 \mathrm{~m}^{3}=1 \mathrm{~cm}^{3} \\ 10^{-9} \mathrm{~m}^{3}=1 \mathrm{~mm}^{3} \\ 10^{-18} \mathrm{~m}^{3}=1 \mu \mathrm{~m}^{3} \end{gathered}$
Volume	Cubic decimetre	dm^{3}	$0.001 \mathrm{dm}^{3}=1 \mathrm{~cm}^{3}$
Area	Square metre	m^{2}	$\begin{gathered} 10000 \mathrm{~m}^{2}=1 \mathrm{ha} \\ 0.0001 \mathrm{~m}^{2}=1 \mathrm{~cm}^{2} \end{gathered}$
Mass	Kilo gram	kg	$\begin{gathered} 1000 \mathrm{~kg}=1 \text { tonne } \\ 0.001 \mathrm{~kg}=1 \mathrm{~g} \end{gathered}$

Page 7 of 17
For more help visit our website www.exampaperspractice.co.uk

Exam Papers Practice

			$0.000001 \mathrm{~kg}=1 \mathrm{mg}$ $10-9 \mathrm{~kg}=1 \mathrm{\mu g}$
Time	Second	s	$60 \mathrm{~s}=1 \mathrm{~min}$ $60 \mathrm{~min}=1 \mathrm{hour}$
Pressure	pascal	Pa	$1000 \mathrm{~Pa}=1 \mathrm{kPa}$
Energy	joule	J	$1000 \mathrm{~J}=1 \mathrm{~kJ}$
Temperature	degree Celcius	${ }^{\circ} \mathrm{C}$	
Amount ofsubstance	mole	mol	$0.001 \mathrm{~mol}=1 \mathrm{millimole}$

- cm^{3} is the same as millilitre (ml)
- dm^{3} is the same as litre (I)

O Exam Tip

Be careful when us ing the word "amo unt" in yo ur answers. "Amount" has a veryspecific meaning in science - "mole". Instead refer to the mass, volume or concentration of a substance!

Significant figures

- Significant figures must be used when dealing with quantitative data
- Significant figures are the digits in a number that are reliable and absolutely necessary to indicate the quantity of that number
- There are some important rules to rememberforsignific ant figures
- All non-zero digits are significant
- Zeros between non-zero digits are significant
- 4107 (4.s.f.)
- 29.009 (5.s.f)
- Zeros that come before all non-zero digits are not significant
- 0.00079 (2.s.f.)
- 0.48 (2.s.f.)
- Zeros afternon-zero digits within a number without decimals are not significant
- 57,000 (2.s.f)
- 640 (2.s.f)
- Zeros afternon-zero digits within a number with decimals are significant
- 689.0023 (7.s.f)
- When ro und ing to a certain number of significant figures:
- Identify the significant figures within the number using the rules above
- Count from the first significant figure to the specified number
- Use the next number as the 'rounderdecider'
- If the decider is 5 orgreater, increase the previous value by 1

Worked example

Write 1.0478 to 3 significant figures.

Answer:

Step 1: Identify the significant figures

They are all signific ant figures
Step 2: Count to the specified number (3rds.f.)
1.0478

Step 3: Round up or down
1.05

(-) Exam Tip

An exam question may sometimes specify how many signific ant figures the answer should be, make sure youkeep an eye out forthis!

Processing Uncertainties in Biology

Processing Uncertainties in Biology

What is uncertainty?

- Uncertainty is quantitative indication of the quality of numerical results
- It is the difference between the actual measurement, resulting from the equip ment or techniques used to collect data, and the true value
- It is a range of values aro und a measurement within which the true value is expected to lie
- Uncertainties are not the same as errors
- Errors arise from equipment orpractical techniques that cause a reading to be different from the true value
- Uncertainties in measurements are recorded as arange (\pm) to an appropriate level of precision, e.g.
- If a balance that measures mass shows scale graduations of 10 g , then mass is measured to the nearest 10 g (this is known as the margin of error)
- The true value could be 5 g higher or lower than the measured value, so the uncertainty would be $\pm 5 \mathrm{~g}$
- If a pipette shows scale graduations every $0.1 \mathrm{~cm}^{3}$, then volume is measured to the nearest 0.1 cm^{3}
- The true value could be $0.05 \mathrm{~cm}^{3}$ more orless than this, so the uncertainty would be $\pm 0.05 \mathrm{~cm}^{3}$

Error bars

- The uncertaintyin a measurement can be shown on a graph as an errorbar
- This bar is drawn above and below the point (or from side to side) and shows the uncert ainty in that measurement
- Usually, errorbars will be in the vertical direction, fory-values, but can also be plotted horizontally, forx-values
- Range, degree of precision, stand ard error and standard deviation;can be expressed ona graph using errorbars
- Range = the difference between the lowest and highest value
- Degree of precision = how close a set of data points are to each o ther
- Standard error = an estimate of the reliability of the mean
- Standard deviation = the spread of data around the mean
- Note that it is important that youknow what is represented byerror bars on a graph, e.g. whether theyrepresent standard deviation orstandard error; in an exam this information would be provided in the question
- Errorbars that represent standard deviation can be used to assess whetherornot two data sets are significantly different to each other
- Overlapping error bars indic ate that two sets of data are not significantly different
- Errorbars are used in the specification when measuring osmotic concentration

Errorbars on a graph can be used to show uncertainty

Level of precision

- Measurements and processed uncertainties must be expressed to an appropriate level of precision
- E.g. number of decimal places
- This may depend on the sensitivity of the apparatus used to collect data; the level of precision used to express the data should not exceed the level of precision at which the data is initially measured
- Values in a raw data set should all be expressed to the same level of precision

The coefficient of determination, R^{2}

- The coefficient of determination is a measure of fit that can be applied to lines and curves on graphs
- The coefficient of determination is written as R^{2}
- It is used to evaluate the fit of a trend line / curve with its data set:
- $R^{2}=0$
- The depend ent variable cannot be predicted from the independent variable.
- R^{2} is usually greater than or equal to zero
- R^{2} between 0 and 1
- The depend ent variable can be predicted from the ind epend ent variable, although the degree of success depends on the value of R^{2}
- The closer to 1 , the better the fit of the trend line / curve
- $R^{2}=1$
- The depend ent variable can be predicted from the ind epend ent variable
- The trend line / curve is a perfect fit
- Note: This does not guarantee that the trend line / curve is a good model forthe relationship between the dependent and independ ent variables
- Coefficient of determination is used in the specification when comparing the speed of nerve impulse transmission

Correlation

- Correlation is an association, or relationship, between variables
- Note that there is a cleardistinction between correlation and causation: correlationdoes not necessarily indicate a causal relationship
- Causation occurs when one variable has an influence or is influenced by another
- Correlation can be positive or negative
- Positive correlation: as variable A increases, variable B increases
- Negative correlation: as variable Aincreases, variable B decreases
- The correlation coefficient (\mathbf{r}) can be calculated to determine whether a linear relationship exists between variables and how strong that relationship is
- Perfect correlation occurs when all of the data points lie on a straight line; this will give a correlation coefficient of lor-1
- 1=a perfect positive correlation
- -1 = a perfect negative correlation
- Aless-than perfect correlation will give a correlation coefficient between 1 and 0 , or between 0 and -1
- The closer to 1, or -1, the coefficient is, the stronger the correlation
- If there is no correlation between variables the correlation coefficient will be 0
- Correlation coefficients are used in the specification when evaluating data on coronary heart disease

A strong correlation will have a correlation coefficient close to 1, a weak correlation will have a correlation coefficient close to 0 , while a lack of any correlation will give a correlation coefficient of 0

Statistical tests

- Statistical tests are used to assess whether ornot a data set supports a particular hypothesis.
e.g.
- A null hypothesis will state that there is no significant difference, or association, between two variables
- An alt ernative hypothesis will state that there is a significant difference, or association, between two variables
- Statistical analys is allows researchers to accept or reject the null hypothesis
- If a statistical test shows that there is no significant difference, or association, between variables, then it is said that anyvisible difference is due to chance alone
- Different statisticaltests are used fordifferent types of dataset,e.g.
- At-test determines whether the means of two data sets differsignificantly
- A correlationtest determines the presence and strength of a correlation
- A chi-squared test determines whether the difference between observed and expected values is signific ant
- You should be able to select and apply the correct statistical test
- The chi-squared test is used in the specification as follows:
- To test for difference between observed and expected outcomes of a genetic cross
- To test for association betweenspecies

Graphing in Biology

Graphing in Biology

Sketch graphs

- Sketch graphs are a wayto represent qualitative trends where the variables shown are often proportional orinversely proportional

A simple sket ch graph

A sketch graph of the relationship between time and volume of gas given off, these two variables show a proportional relationship trend

General guidance on drawing graphs

- The types of graphs that students are expected to be able to draw include:
- Barcharts
- Histograms
- Scattergraphs
- Line / curve graphs
- Lo garithmic graphs
- Pie charts
- Box-and-whiskerplots

Tips for plotting data

- Whatever type of graph you use, remember the following:
- The data should be plotted with the independent variable on the \mathbf{x}-axis and the dependent variable on the \mathbf{y}-axis
- Plot data points accurately
- Use appropriate linear scales on axes
- Choose scales that enable all data points to be plotted within the grapharea
- Labelaxes, with units included
- Make graphs that fill the space the exam paper gives you
- Draw a line of best fit. This may be straight or curved depending on the trend shown by the data. If the line of best fit is a curve make sure it is drawn smoothly. A line of best-fit should have abalance of datapoints above and below the line
- In some cases, the line or curve of best fit should be drawn through the origin (but only if the data and trend allow it)

Continuous dat a represented in a line graph

Discontinuous data represented in a barchart

Exam Papers Practice

SHOE SIZES IN CLASS 11A

The line graph has been used to display continuous data over time while the bar chart has been used to display grouped data

- Remember: The independent variable is the one you control ormanipulate and the dependent variable is the one that changes as a result of your manipulation
- Always draw data points in pencil as it makes it easier to make corrections and adjustments

Best fit lines

- Students often confuse the term lines of best fit with straight lines
- Lines of best fit can be straight lines or curves and:
- Theyshow the trend of the data
- It does not have to go through all the points, but shows the general trend
- Theymust go through the majo rity of the points
- Where the data is scattered the points should be evenly distributed on either side of the best fit line

Graph to show use of a best fit line

RELATIONSHIP BETWEEN WIDTH AND DEPTH

Other features of graphs

Using a tangent to find the initial rate of a reaction

- For linear graphs (i.e. graphs with a straight-line), the gradient is the same throughout
- This makes it easy to calculate the rate of change (rate of change $=$ change \div time)
- However, manyenzyme rate experiments produce non-linear graphs (i.e. graphs with a curved line), meaning they have an ever-changing gradient
- They are shaped this way because the reaction rate is changing over time
- In these cases, a tangent can be used to find the reaction rate at anyo ne point on the graph:
- A tangent is a straight line that is drawn so it just to uches the curve at a single point
- The slope of this tangent matches the slope of the curve at just that point
- You then simply find the gradient of the straight line (tangent) you have drawn
- The initial rate of reaction is the rate of reaction at the start of the reaction (i.e. where time $\mathbf{= 0}$)

