

	EXAM PAPERS PRACTICE
Name:	

TOPIC 1	: KEY	CONCEPTS	IN BIOL	.OGY	PART 1	MS & E	R
---------	-------	----------	---------	------	--------	--------	---

Date:

Time:

Total marks available:

Total marks achieved: ____

Examiner's Report

This question required candidates to explain the role of the active site of an enzyme. Credit was given for recognising that its specific shape binds a specific substrate and that the reaction is catalysed there to either join together or break down molecules. Most candidates gained a mark for the idea that a reaction occurred here which breaks something down. Credit was also given for the fact that this is a lock and key mechanism or words to that effect.

The active site of an enzyme is the part where it joins to onto its substrate to coralyse the reaction the active site has to match the enape of its substrate (lack and kex mechanism).

Otherwise the reaction will not occur.

Results Plus: Examiner Comments

This is a good answer which recognises the role of the active site on an enzyme and what happens at this active site. The fact that a substrate binds and the reaction is catalysed is sufficient for the marks.

Results Plus: Examiner Tip

When asked to explain ensure you are giving scientific detail about the question asked. Try to avoid answering in bland meaningless statements.

to goin it, it is mailing to see suich with ONA.

Results Plus: Examiner Comments

This candidate's answers have missed out on the marks as they are not specific enough. It needed to mention what binds to the active site i.e. the substrate to gain the mark. It also confused this question with the previous about DNA, remember each part of a question a, b and c may be about different topic areas. Parts of questions (a)(i), (a)(ii) with be related to one another so the links there may be noticeable.

Q2.

This question required candidates to explain the role of the active site of an enzyme. Credit was given for recognising that its specific shape binds a specific substrate and that the reaction is

catalysed there to either join together or break down molecules. Most candidates gained a mark for the idea that a reaction occurred here which breaks something down. Credit was also given for the fact that this is a lock and key mechanism or words to that effect.

The active site of an enzyme is the part where it joins one onto its substrate to conclude the reaction. The active site has to make the enable of its substrate (lack and key mechanism) otherwise the reaction will not occur.

Results Plus: Examiner Comments

This is a good answer which recognises the role of the active site on an enzyme and what happens at this active site. The fact that a substrate binds and the reaction is catalysed is sufficient for the marks.

Results Plus: Examiner Tip

When asked to explain ensure you are giving scientific detail about the question asked. Try to avoid answering in bland meaningless statements.

the active site is the bit that is prepared for sanething to foris it, it is wanterly to se suited with ONA.

Results Plus: Examiner Comments

This candidate's answers have missed out on the marks as they are not specific enough. It needed to mention what binds to the active site i.e. the substrate to gain the mark. It also confused this question with the previous about DNA, remember each part of a question a, b and c may be about different topic areas. Parts of questions (a)(i), (a)(ii) with be related to one another so the links there may be noticeable.

Q3. No Examiner's Report available for this question

Q4.

(i)

Candidates were asked to explain why the tip of roots were used to investigate mitosis. Many

responses referred to mitosis in the root tip, but this fact was given in the stem of the question. The term meristem was seen infrequently, but many candidates knew that growth occurs in root tips. There was some misinterpretation of the question, with a number of candidates describing the function of roots in terms of absorbing water and mineral ions.

A student investigated mitosis in the root tip of a garlic plant.

(i) Explain why the student used the tip of the root.

(2)

that is where the meristem is found mitosis then occurs during growth repair or asexual reproduction (in this case growth).

Results Plus: Examiner Comments

This is a good answer which scores both marking points. The candidate has referred to the root tip containing the meristem and growth occurring.

The students used the tip of the root because that is where there will be growth and therefore a place where mitoris will occur.

Results Plus: Examiner Comments

This answer scores 1 mark for stating that growth occurs at the root tip. The reference to mitosis does not gain any credit.

(ii)

This question was based on a core practical, requiring knowledge of how to use a microscope to obtain a clear image of cells. Some candidates carefully described how to prepare a root tip squash, but this was not asked for in the question.

Candidates with a good knowledge of the parts of a light microscope and how a light microscope works were able to score two marks. There were many muddled references to eyepiece and objective lenses which could not be awarded a mark. References to zooming in and out were not credited, but different ways of describing how to focus on the cells were accepted, such as moving the stage up and down, or turning the focusing wheel.

(ii) The student squashed the root tip on a microscope slide to spread out the cells.

The slide was placed on the stage of a microscope.

Describe how to use the microscope to obtain a clear image of the cells.

Start ctf on the burest powered magnification and then by using the focus uneel, focus look into the eyepeice and focus until clear image of the cells is acheved.

Results Plus: Examiner Comments

This answer scores full marks. The candidate has referred to using the focusing wheel and looking into the eyepiece (lens). The reference to lowest powered magnification does not gain any credit - the answer should refer to lowest objective lens.

ne the lowest power objective leve to start with and acinst the start with a the social way while at single they

Results Plus: Examiner Comments

This candidate has a good understanding of how to use a microscope to obtain a clear image of cells. The answer scores full marks, even though there is no reference to switching the lamp on.

Results Plus: Examiner Tip

Check that you know the names of the parts of a microscope and how they are used to obtain a clear image of biological specimens.

(iii)

This question was answered very well. The question was based on a core practical and a large proportion of candidates gave the correct answer of use a stain, or they gave iodine (solution) as an acceptable example of a stain.

(iii) The student could not see the chromosomes inside the cells.

State what can be added to the root tip squash to make the chromosomes visible.

(1)

a dye which stiens to the chromosomes

Results Plus: Examiner Comments

Add a dye is an acceptable alternative to stain for this mark.

They can add a solution to make it

Results Plus: Examiner Comments

This answer does not score a mark because the candidate has not named the type of solution that should be added to make the chromosomes visible.

Results Plus: Examiner Tip

Always try to give a specific answer to a question. Just writing 'solution' is too vague.

Q5.

(i) To obtain the mark on this item, candidates had to recognise that the result at 150 seconds shows that all of the starch had been digested, not just that starch had been digested or that

glucose had been produced. The candidates had to identify that the result at 150 seconds is the first where starch is not detected.

- (ii) This practical skills-based question required the identification of controlled variables for an investigation. Marks were awarded most frequently for concentration of the starch or amylase and the time intervals used. The time taken to digest starch was a common incorrect response. Candidates who missed out on marks repeated information given in the question, which had already stated that equal volumes and a temperature of 25°C were used.
- (iii) Higher ability candidates recognised that the tubes without amylase added were a control, other responses which were also credited referred to the idea confirmed that it is the amylase that breaks down the starch. A control variable is incorrect and not credited but was seen as an incorrect response.

Q6.

- (i) This calculation where candidates were asked to calculate the percentage difference in the mean length of starch grains was challenging, with most unable to extract and find the difference (50 30 = 20) from the relevant data in the table. About half of those that did, then stated 20%, as their answer, instead of the correct 40% not noticing that the 20 μ m change needed to be compared to 50μ m.
- (ii) Candidates tend to be good at which variables to control in an investigation, and plenty of good answers were seen mainly covering temperature and mass / size of potato. A few suggested light intensity which was not credited as the question stated twice that the potatoes were stored in the dark. Time was also not accepted as this was the independent variable.
- (iii) This question informed the candidates that the starch was converted to glucose by the potatoes. Candidates were then asked to state why the potatoes needed glucose. Whilst a few candidates stated for respiration / energy most candidates said to grow which was deemed to be secondary point and thereby not creditworthy.

Q7.

- (i) This calculation proved to be a little trickier for candidates although most were able to gain the first mark for taking 30 away from 50. Alternative methods of calculating the final mark of -40% were credited.
- (ii) Where candidates understood the practical task they were able to give correct variables such as the mass of the potato or the temperature but several referred to making sure the starch grains were all the same size at the start which is not a very practical suggestion.
- (iii) This question was well answered and possible answers included both respiration or release of energy. As always we do not credit incorrect science so to produce energy was not credited.

(iv) The majority of candidates could recognise that the starch was broken down by an enzyme but few were able to link this to the breaking of bonds between the glucose molecules or that this occurred at the active site of the enzyme. Named enzymes were accepted as long as they were carbohydrases.

Q8.

(i)

This question required an understanding of the test for starch, which is part of a core practical. Candidates had to interpret information from a table of results and give a reason why the contents of two test tubes were blue-black at the beginning. Many candidates found the question challenging and did not score the mark, which was awarded for stating that starch was present or that iodine had reacted with starch.

The colour of the contents of each test tube was recorded every two minutes for a total of ten minutes.

The results are shown in Figure 11.

	colour of the contents of each test tube								
time in minutes	test tube 1 starch and iodine solution with liquid from the mouth	test tube 2 starch and iodine solution with liquid from the stomac							
0	blue-black	blue-black							
2	blue-black	blue-black							
4	brown	blue-black							
6	orange	blue-black							
8	orange	blue-black							
10	orange	blue-black							

Figure 11

 Give one reason why the contents of both test tubes were blue-black at the beginning of the investigation.

(1)

Because Starch is present in them both.

Results Plus: Examiner Comments

In this answer the candidate understands that the blue-black colour means that starch is present.

test tubes were blue-black at the

(1)

(i) Give **one** reason why the contents of both test tubes were blue-black at the beginning of the investigation.

because the starth was not broken down by the enzym

Results Plus: Examiner Comments

This is an alternative way of answering this question. The response scores the mark because the candidate understands that starch is present and hasn't yet been broken down.

Results Plus: Examiner Tip

Make sure that you learn the names of the chemical reagents used to identify starch, reducing sugars, proteins and fats.

(ii)

In this question candidates had to explain the outcome of an investigation involving enzymes from different parts of the digestive system. The majority of candidates found the question very challenging. The marking point awarded most frequently was for the idea that starch had been broken down in test tube 1. Fewer candidates were able explain that starch had not been broken down in test tube 2. Only those candidates who had a clear understanding of the investigation scored a mark for making a link between the presence of amylase and the breakdown of starch.

after 10 minutes test tube I was
orange whilst test tube 2 remained
blue - black throughout the investigation.
This shows that in test tube I the
starch was preaking down during the
investigation whereas test tube 2
hadral aid not break down during the
investigation.

Results Plus: Examiner Comments

In this response the candidate has started by describing the colour of the contents of the tubes after 10 minutes. The description does not score any marks, but the candidate has then explained that in tube 1 starch was broken down. This scores one mark. The candidate has not stated that **starch** has been broken down in tube 2, so this point does not score a mark. The candidate has not explained that amylase is present in the mouth, or that amylase is not present in the stomach.

evanged from blue black to ovange Mohenary
test tube 2 hadn't changed solour after
10 minutes.

Results Plus: Examiner Comments

This answer does not score any marks because it is a description of the results, not an explanation.

Results Plus: Examiner Tip

Remember to check the command words in questions. Explain means that you must say how or why something happens. So, in this example you should say why test tube 1 changed from blue-black to orange.

Q9.

Approximately half of the candidates scored at least one mark for attempting to calculate the distance diffused by hydrochloric acid in one second for cube B. This question is not based on a core practical, but nevertheless, it is important that candidates are familiar with investigations such as this. The majority of candidates could give an improvement that should be made to confirm the results of the investigation.

Q10.

(i)

Candidates find the idea of a control as part of an experiment hard. Although this was an easier application of the two ways controls were used, relatively few candidates scored the available mark. To score here, candidates had to say that the potato chips in the 0% sodium chloride solution were used to compare to see how much the potato chips in the other concentrations had changed. This item was left blank by a larger number of candidates than most other items and candidates found it hard to express what the role of the control was in an investigation. The most common error was to say to see how the chips changed in it.

A student wanted to investigate the movement of water into and out of cells in potatoes.

The student had the equipment shown in Figure 11.

Figure 11

The test tubes in the rack contain different concentrations of sodium chloride solution.

The solutions were 0.1 M, 0.2 M, 0.3 M, 0.4 M and 0.5 M sodium chloride solution.

The test tube in the beaker contains distilled water.

There are three potato chips in each of the six test tubes.

 State why the test tube in the beaker only contains distilled water and three potato chips.

(1)

one so we can compare it to the others.

Results Plus: Examiner Comments

A good 1 mark answer.

Results Plus: Examiner Tip

When setting up an investigation, we often set up one part of the equipment to use as a baseline. We then compare the results in the other parts of the investigation with this baseline. Make sure you know this use of a control.

(ii)

We insist that in experiments we refer to volume of liquids and so amount of sodium chloride solution was not credited here. This is true across all three of the sciences. This has been stated and stressed in past examinations and so it was disappointing that many candidates wrote amount of sodium chloride solution thus not gaining a mark. Even so, half of the candidates gained 1 mark with a further third gaining 2 marks. Some candidates stated that a variable to control was the concentration of sodium chloride which was the independent variable and therefore had to be different whilst common creditable responses included volume of sodium chloride, mass /size / length / surface area of potato chip at the start of the investigation (as mass was the dependent variable) and time the chips were left in the solution. Many candidates added that these should be kept the same which is true, but not required for the mark in this case due to the way the question was phrased.

	(ii) State two variab	oles that need to be controlle	d in this inves	stigation.	(2)
1	Same	amond	of	wate	
		A MONTH OF THE PROPERTY OF THE		AND AND ADDRESS OF THE PERSON	4.44 (1-11 11-14-18-18-18-18-18-18-18-18-18-18-18-18-18-
2	Same	owor4	Of (potatoe	grigorios and an annual and and all the the
r.m.m.m.d14141	chips			okipunigai ji iiiminimininin ii il iliiobbi	MANUFACTURE OF THE PROPERTY OF

Results Plus: Examiner Comments

This scores no marks as amount of water needs to be volume of solution and same amount of chips is not creditworthy as the investigation set up states that there are three chips in each tube.

Results Plus: Examiner Tip

Read the question carefully, underline key facts and then do not use parts that are stated as the same as something to control as it already has been.

Results Plus: Examiner Comments

2 marks here for marking points one and five.

Results Plus: Examiner Tip

Make and learn a list of things that can affect an investigation and then write about two that are not already controlled or are the independent variable.

(iii)

Less than one third of candidates managed to score any marks with very few scoring all three here where candidates had to explain why the potato chips in 5% sodium chloride solution lost mass. Many candidates just talked about because there were different concentrations inside the chip to the solution but as they did not state the concentration of water could not be credited with a mark. Many of those that talked about water moving across the membrane but did not say out of the potato / into the solution to hit marking point two. The most common marking point seen was osmosis. Candidates need to be trained better into stating which way the water is moving and stating the concentration of either the water or the solute in their responses.

(iii) Explain why the chips in the 0.5 M sodium chloride solution lost mass.

Here was mass because the water maredant of the Parato chips through across Seconce because there was a lower concentration outside.

Results Plus: Examiner Comments

2 marks here for water moving out of the potato and by stating that this was due to osmosis. Lower concentration is not creditable as it does not specify that the concentration referred to concentration of water.

(3)

(iii) Explain why the chips in the 0.5 M sodium chloride solution lost mass.

brotter could not depuse in and orter in the sodium chloride allowed reverse asmosis to happen. The liquid molecules travelled from the low concerntration in the potato chip, to the high concerntration of the sodium chloride solution, This caused the potato chip to loose mass.

Results Plus: Examiner Comments

This is not very clearly written but worth 2 marks for osmosis (ignoring the reverse) and liquid molecules (as the only liquid there is water). We may be tempted to read into the relative concentrations that they are writing about from a low solute concentration to a high solute concentration. The problem with that is other candidates are talking about it in the same way and referring to from the high concentration in the chip to the low concentration in the sodium chloride solution and if we read into this response one way and read into the other the other way, then these candidates will get a mark for giving an opposite response.

Results Plus: Examiner Tip

When talking about water moving into / out of cells:

- state by osmosis
- state clearly which way way the water is moving
- state what concentrations you are talking about, eg from a high concentration of water particles to a low concentration of water particles.

(ii) Few candidates were able to recall that the three domain classification system was proposed based on increased knowledge of genetics. A few high ability candidates did refer to gene structure or RNA sequencing. The majority of responses focused on the idea that it was easier to classify this way or that not all organisms could be easily classified with the 5-kingdom method.

Q12.

- (i) This question was very applied, and candidates had to recognise that they would need to test for both starch and glucose using the correct biological food tests. Many candidates were very clear about the test for starch but several were unable to correctly give an explanation of how to carry out the test for reducing sugars using Benedict's reagent.
- (ii) This question asked candidates how the experiment modelled dialysis treatment. We were looking for the idea of the movement of substances by diffusion from high to low concentrations or the idea that the dialysis membrane acts as a cell membrane allowing smaller molecules to move across it. Many candidates referred to the idea of ultrafiltration which was not evidenced in this model.

Q13.

(ii) This question revolved around the use of enzymes and why mashing a foodstuff before adding the enzyme would be an advantage. Many candidates recognised that this would increase the surface area of the food so the trypsin could break down more of it or to allow a faster rate of reaction. Common errors here were the reference to it being small enough for the baby to eat as this was about the use of trypsin in baby food. Please note that we do not control the temperature by using a thermometer we merely measure the temperature with the thermometer which is not the same thing and was not awarded the mark.

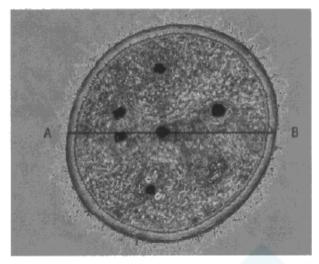
Q14.

- (ii) Many candidates indicated that the enzymes were working faster for this item. Higher ability candidates went on to indicate that this was closer to the optimum. Very few candidates explained that this meant there was more kinetic energy, more collisions or more enzyme-substrate complexes. Candidates need to recognise that when the command word is explain their responses need to include scientific reasoning.
- (iii) As is often seen, candidates are better able to explain what happens to enzymes at high temperatures than at low temperatures. Most candidates were able to explain that the milk would not clot or clot at a slower rate because the enzyme would be denatured. Times greater

than 75 seconds were accepted.

- (iv) This item was generally answered well with most candidates giving the idea that it was used to see if the effect of not adding chymosin or that it was a control. Some responses referred to the idea of accurate, precise or reliable results and candidates must be aware that these words have a specific meaning scientifically.
- (vi) Most candidates were able to give at least one improvement to the method with many of them being awarded both marks. The most frequent marks awarded were for smaller intervals between the temperature and for the indication that this would be around 35°C to 45°C or repeating the test at each temperature. Some candidates gave the idea that a wider range of temperatures could be used and this was not credited.
- Q15. No Examiner's Report available for this question
- Q16. No Examiner's Report available for this question

Q17.


(i)

The use of the magnification equation and unit conversion was required for this question and many candidates demonstrated the required mathematical skills, showing an improvement in understanding of this topic. Full marks are given for the correct answer but if this was not obtained there were working marks for the measurement, a division by 50 000 and a unit conversion of x1000 or x10 000 if the candidate measured in cm. Candidates who measured in cm were more likely to make an error during the calculation. Some candidates divided by 1000 rather than multiplied or did not attempt a unit conversion.

Figure 7 shows a cyanobacterium magnified 50 000 times.

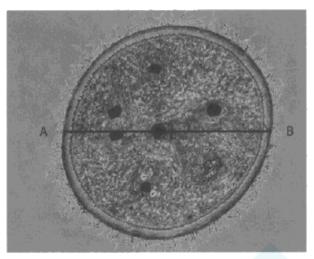
The line AB shows the diameter of the bacterial cell.

(Source: The Christian Science Monitor)

Figure 7

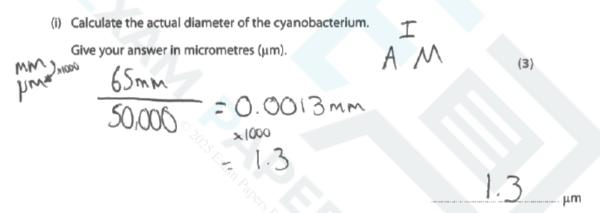
(i) Calculate the actual diameter of the cyanobacterium.

Give your answer in micrometres (µm).


6.5cm 65mm 65 - 0.065 µm 1000 0.065 µm

Results Plus: Examiner Comments

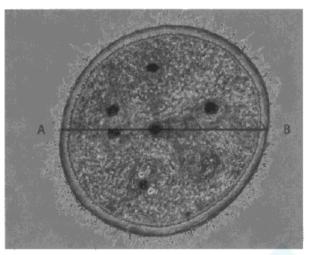
This response is awarded 1 mark for the correct measurement. There is no attempt to use the magnification and the unit conversion attempt is incorrect.



The line AB shows the diameter of the bacterial cell.

(Source: © The Christian Science Monitor)

Figure 7


Results Plus: Examiner Comments

This shows a good model answer. The workings are shown and the measurement, magnification calculation and unit conversion are clearly shown.

Results Plus: Examiner Tip

Always show your workings for magnification calculations including the units used to make measurements.

The line AB shows the diameter of the bacterial cell.

(Source: The Christian Science Monitor)

Figure 7

(i) Calculate the actual diameter of the cyanobacterium.

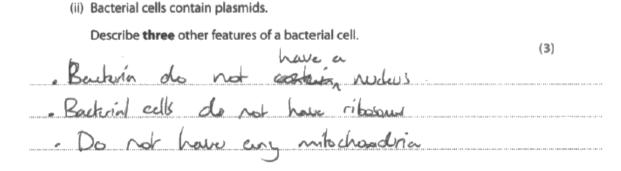
Give your answer in micrometres (µm).

30 µm

Results Plus: Examiner Comments

This response shows a common error but still obtained 2 marks highlighting the importance of showing workings. The measurement is correct in cm which are given and this has correctly been divided by 50 000. The x1000 unit conversion is incorrect because the distance has been measured in cm.

Results Plus: Examiner Tip


Always measure in mm which is a standard unit.

(ii)

This question asked for three features of bacterial cells. The question stated that they contained plasmids as this is given in the rest of the question, consequently loops of DNA was insufficient, they needed chromosomal DNA or the idea of no nucleus. All cells have a cell membrane and

cytoplasm so these were insufficient. The most common correct responses were chromosomal DNA in the cytoplasm, flagella and cell wall. Some candidates stated that the cell wall was not made of cellulose but this was not required. A list rule was applied for the reject responses of nucleus and mitochondria and these were the most common incorrect responses seen.

Results Plus: Examiner Comments

This response scored 2 marks for no nucleus and no mitochondria. Ribosomes are found in bacterial cells.

(ii) Bacterial cells contain plasmids.

Describe three other features of a bacterial cell.

(3)

Bacterial cells contain chromosomal DNA used

to code for proteins

Bacterial cells may contain flagella for

movement and capsules for protection.

Bacterial cells contain ribosomes for

protein synthesis.

Results Plus: Examiner Comments

(ii) Bacterial cells contain plasmids.

This response scored the full 3 marks although each point they make is correct for a bacterial cell. The explanation of each feature was not required.

Describe three oth	(3)			
they bacterial	Cells	don't	have a waeus	(- <i>y</i>
batterial	cells	haule	a coll wall	

Results Plus: Examiner Comments

This response is concise but clear and scored 2 marks.

Q18.

This maths question on magnification required candidates to measure the width of the egg cell and calculate it's actual width with the answer in millimetres and standard form. Some candidates measured the diameter in centimetres which led to an error in the calculated value as it was not converted to millimetres. It is highly recommended that candidates measure in millimetres as it leads to less errors when unit conversions are required. Some candidates completed the calculation correctly but did not express the answer in standard form.

Q19.

(i)

This maths question required candidates to calculate the difference in the number of neurones between the rat and the frog in standard form. Many candidates were able to gain both marks, candidates could have used a calculator giving the answer in standard form. Candidates were more likely to make and error if they wrote out the full numbers. 1 mark was given for the correct answer not in standard form. No marks were awarded if the incorrect data was used.

Figure 16 shows the number of neurones in the brain of different animals.

animal	number of neurone in the brain					
lobster	1.0 × 10 ⁵					
frog	1.6 × 10 ⁷					
rat	2.0 × 10 ⁸					
human	8.6 × 10 ¹⁰					

Figure 16

(i) Calculate the difference between the number of neurones in the brain of the rat and the brain of the frog.

Give your answer in standard form.

$$2.0 \quad (2.0 \times 10^8) - (1.6 \times 10^7) = 12.5$$

184000000 neurones

(2)

Results Plus: Examiner Comments

This response was awarded 1 mark for the correct mathematical answer but not in standard form.

16000000

Figure 16 shows the number of neurones in the brain of different animals.

animal	number of neurones in the brain					
lobster	1.0 × 10⁵					
frog	1.6 × 10 ⁷					
rat	2.0 × 10 ⁸					
human	8.6 × 10 ¹⁰					

Figure 16

(i) Calculate the difference between the number of neurones in the brain of the rat and the brain of the frog.

Give your answer in standard form.

$$2.0 \times 10^{8} - 1.6 \times 10^{7} = 1.84 \times 10^{8}$$

1.84x108 neurones

Results Plus: Examiner Comments

This response is worth full marks for the correct answer in standard form.

(ii)

Candidates of higher ability scored well on these questions as their responses were accurate and concisely presented. This question revealed a number of misconceptions and candidates frequently lost marks because of the phrasing in their responses. Myelination speeds up the electrical impulses and not neurotransmission. The idea that it prevents messages getting lost was insufficient. Messages travel long distances along motor neurones, the neurones do not travel long distances. Descriptions of saltatory conduction were accepted for the idea of speeding up the impulse. In addition, the concept that motor neurones are involved in reflex arcs and therefore impulses need to be transmitted quickly. Speeding up impulses was the most common mark awarded.

(ii) Most neurones in the brain are unmyelinated whereas motor neurones are myelinated.

Explain why myelination is needed on motor neurones but not on neurones in the brain.

The motor neurons have very long arons. Through this long aron, clockrical imprises must be transferred from the cell body to a effector. Mgelmation is used to insulate the aron, causing the based electrical impriser to move forth to the effector much poster. The neurons in the brain dank need engelmation because they dank hours to travel as fare so dank need to go as fast. Effetors caused the body to move so the imprises need to be fast so proste an quiary move so the motor neurons are insulated.

Results Plus: Examiner Comments

This shows a good response, full marks were awarded. They have the idea that impulses have to travel long distances and to effectors. They also give the role of myelination insulating the axon causing the electrical impulses to travel faster.

F

(ii) Most neurones in the brain are unmyelinated whereas motor neurones are myelinated.

Explain why myelination is needed on motor neurones but not on neurones in the brain.

myselin meatre insulate the neuroneso ovat it can transmit me electrical impulse paster. Myselination is readed on motor neurones because mey need insulation but me heurones in one brain donot. As mey don't need to be myselinated for their purpose and only don't transmit metrical impulses to muscles but motor neurone's roles are to transmit information but motor neurone's roles are to transmit information.

Results Plus: Examiner Comments

to one nuscles.

This response scored full marks for insulating the neuron causing the electrical impulses to be transmitted faster and to muscles which are a named effector.

(ii) Most neurones in the brain are unmyelinated whereas motor neurones are myelinated.

Explain why myelination is needed on motor neurones but not on neurones in the brain.

(3)

Myelination is a process where the axon and dendrous of a neurone are one correct by a fatty fager called the myslin sheath. His steath electrically insolates the neurona. Motor housenessneed myelination as it speeds up the neuronas are by generaling sure no energy excapes.

Results Plus: Examiner Comments

This response scored 1 mark for insulation. It does not speed up neurones and preventing energy escaping is not creditworthy.

EXAM PAPERS PRACTICI

Results Plus: Examiner Tip

Take care when talking about the nervous system that you refer to electrical impulses travelling along the neurones and not the neurones travelling.

Q20.

(ii)

It was pleasing to note than the majority of candidates were able to access this mathematical challenge and correctly apply the magnification calculation. As this is an overlap question with the foundation paper there was not a conversion between units required; however, at a different stage in the paper this may also have been asked for. Common errors were dividing the actual size of the cell by the magnification rather than multiplying it.

(ii) The actual length of the red blood cell from a turtle is 20.5 μm.

Calculate the length of the magnified image of the red blood cell of the turtle when magnified $400\,\times$.

magan

20.5 ×400 = 8200 µm

%200 μm

Results Plus: Examiner Comments

Clear working is shown and the correct answer is on the answer line for 2 marks. In this case no conversion was required but it is always worth checking the units on questions to ensure that all measurements are in the same unit.

(iii)

This magnification calculation also required candidates to convert their answer into standard form. Several candidates calculated the correct response but missed the instruction to present their answer in standard form so lost 1 mark.

FI

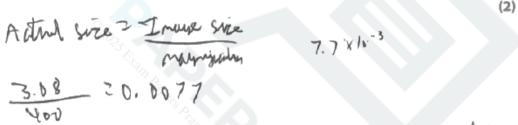
(iii) The width of the human red blood cell, when magnified 400 x, is 3.08 mm.

Calculate the actual width of the cell and show your answer in standard form.

$$M = \frac{1}{M}$$

$$\Delta = \frac{1}{1} = \frac{3.08}{7.7 \times 10^{-3}} = 7.7 \times 10^{-3} \text{ m/m}$$

7.7×10-3 mm


(2)

Results Plus: Examiner Comments

This is the correct calculation and the answer is in standard form on the answer line so 2 marks can be awarded.

(iii) The width of the human red blood cell, when magnified 400 x, is 3.08 mm.

Calculate the actual width of the cell and show your answer in standard form.

0.0677 mm

Results Plus: Examiner Comments

The question asks for the answer to be put in standard form which is the second marking point. This response can only be awarded 1 mark as they either missed the instruction or did not understand standard form.

Results Plus: Examiner Tip

Maths skills are now an implicit part of the biology specification: make sure you are familiar with the common calculations such as magnification calculation, calculating a mean, rate calculations and percentage change calculations. All of these are common in biology.

Q21.

It was pleasing to see that most candidates could use the data given to calculate the length of a magnified image. Some candidates may have scored one mark out of two if they had shown their working for the calculation.

Q22.

(i)

The new specification requires an increase in the application of maths in biology assessments. It also requires candidates to be able to interconvert units.

This question required the candidate to calculate the magnification used to produce the image of the electron micrograph and was an overlap item with the higher paper. Very few foundation candidates scored maximum marks on this question.

The first mark was for measuring the diameter. A number of 4, 5 or 6 was accepted without units as mm was assumed. Any other measurement required the unit to be clarified. Candidates should show units for all calculations.

The second mark was for the unit conversion, which was seen very rarely. The final mark was for dividing by the actual size of the image correctly. This was seen on some higher ability candidates for the paper.

This is an example of a model answer to a calculation question. All the stages are shown clearly.

(i) Calculate the magnification of this electron micrograph.

magnification =
$$\frac{mage size}{real size}$$

magnification = $\frac{somm \times 1000000}{somm \times 1000000} = \frac{somm \times 1000000}{somm \times 1000000} = \frac{somm \times 1000000}{250} = \times 20000$

magnification = $\frac{somm \times 1000000}{250} = \times 20000$

magnification × 20000

This candidate has used the space available to work through the calculation and convert all the units correctly.

(i) Calculate the magnification of this electron micrograph.

(3)

magnification ...

20,000

Results Plus: Examiner Comments

The correct answer is always awarded maximum marks even if workings are not shown.

This item was given one mark for correctly converting 250 nm into mm.

(i) Calculate the magnification of this electron micrograph.

(3)

0,000250 MM

magnification.

2200

Results Plus: Examiner Comments

It is important to show the units on magnification calculations to avoid getting confused.

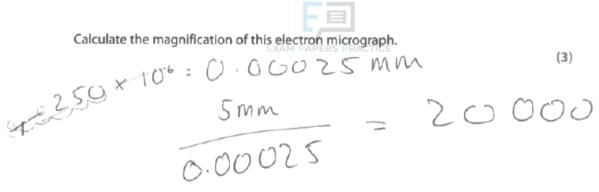
Results Plus: Examiner Tip

Always show your workings for calculations

(i) Calculate the magnification of this electron micrograph.

magnification × 0.026

(3)


Results Plus: Examiner Comments

It is not possible to measure 6.5 mm precisely, so no mark was awarded. The mark has been given for the correct calculation. The candidate has not converted the units so only scores one mark.

Q23.

This question caused some difficulties for candidates. They needed to complete the measurement and give the correct units to achieve the first marking point. The second marking point was for the correct conversion. This is a new skill requirement for the maths criteria for the new specification and is quite challenging. The final mark point was for the correct calculation, by dividing by 250 which was given in the question. There were some errors carried forward if the conversion from their measurement was incorrect but the calculation mark could still be awarded.

This question posed some difficulties for the candidates, with several not completing the correct measurement and so not able to start.

magnification XZOOOO

Results Plus: Examiner Comments

This candidate has completed the correct measurement, the correct conversion and calculated the correct magnification for all three marks.

Results Plus: Examiner Tip

Always show all working.

If a measurement is required then please make sure you include the correct units for the measurement.

Q24.

This question examined candidates' ability to convert units as well as their understanding of the difference between haploid and diploid cells. Many candidates forgot to take into account the fact that they were dealing with a haploid cell, not a diploid cell.

An answer of 6.2 was seen very frequently. This gained 1 mark for converting nanograms to picograms, but not both marks as this answer had not been divided by two.

A scientist obtained a mass of 0.0062 nanograms of DNA from a diploid human cell.

Calculate the mass of DNA the scientist should obtain from a haploid human cell.

Give your answer in picograms.

(1 nanogram = 1000 picograms)

6.2 6.2 picograms

 $\{2\}$

Results Plus: Examiner Comments

This answer scores 1 mark for using information given in the question to convert nanograms to picograms.

Results Plus: Examiner Tip

Remember that a haploid cell contains half the mass of DNA of a diploid cell.

Q25.

There are two aspects to this question, the knowledge that haploid cells contain half the genetic material of diploid cells and the unit conversion from nanograms to picograms. Full marks were awarded for the correct answer but if this was not obtained there was a mark for either dividing the mass by 2 or completing the unit conversion, the answer for this could be given in standard form. The most common mistake was only completing one aspect of the question. Some responses doubled the amount of DNA.

A scientist obtained a mass of 0.0062 nanograms of DNA from a diploid human cell.

Calculate the mass of DNA the scientist should obtain from a haploid human cell.

Give your answer in picograms.

(1 nanogram = 1000 picograms)

3.1 picograms

(2)

Results Plus: Examiner Comments

This response shows both aspects of the calculation and the correct answer was obtained scoring the full 2 marks.

A scientist obtained a mass of 0.0062 nanograms of DNA from a diploid human cell.

Calculate the mass of DNA the scientist should obtain from a haploid human cell.

Give your answer in picograms.

(1 nanogram = 1000 picograms) With Mm

(2)

Ococo a 31 picograms

Results Plus: Examiner Comments

This response scored 1 mark for dividing the mass in the diploid cell by 2. They have divided by a 1000 so the unit conversion was not correct.

A scientist obtained a mass of 0.0062 nanograms of DNA from a diploid human cell.

Calculate the mass of DNA the scientist should obtain from a haploid human cell.

Give your answer in picograms.

(1 nanogram = 1000 picograms)

6 · 2 picograms

Results Plus: Examiner Comments

This response also scored 1 mark. This candidate has halved the DNA from the diploid cell but not given the answer in picograms.

Q26.

(i) The majority of candidates correctly calculated the mean number of starch grains in potato cells P, Q and R to gain the available mark.

Q27.

A calculation of the mean number of starch grains was generally well answered with most candidates able to calculate a mean as is expected at GCSE level. Where there were errors this was mainly due to miscounting the starch grains.

Q28.

The maths skill of calculating a ratio was examined in this question. Candidates across the ability range found this question challenging, but when successful they usually gained both marks for giving the correct ratio of 1:3. Incorrect substitution (15:5) leading to an answer of 3:1 scored one mark for an error carried forward.

Q29.

(i)

This question required the candidate to calculate the surface area to volume ratio to its lowest

possible ratio as is shown in the table.

(i)	Calculate	the su	ırface	area	to	volume	ratio	for	the	cube	with	side	3 cm.
117	Calculate	UIC SU	Hace	arca	100	rolullie	tauo.	101	uic	cube	AAICII	siuc	3 (111

woeside | cm 2 = 3:1

2:1

(1)

Results Plus: Examiner Comments

This is a correct ratio given as the ratios were in the table and so is awarded 1 mark.

(i) Calculate the surface area to volume ratio for the cube with side 3 cm.

5A:27

(1)

546:27

Results Plus: Examiner Comments

This is a ratio but has not been adjusted to its lowest possible ratio, as given in the table, so was not awarded the mark.

(iii)

Several candidates referred to how far into the cube the sodium hydroxide diffused rather than the rate of diffusion which was calculated and was the same for all cubes.

It is essential that the candidate answers the question asked rather than the one they think is being asked.

(iii) Describe the effect of the size of the cube on the rate of diffusion.

cube has no effect on the rate of diffusion

Results Plus: Examiner Comments

The rate of diffusion was given in the table and was calculated in the previous question. Since the rate was the same for all sizes of cube, a statement that the rate of diffusion is the same is correct.

Results Plus: Examiner Tip

Read the question carefully.

This question was about rate, not about how far into the cube the sodium hydroxide moved.

(iii) Describe the effect of the size of the cube on the rate of diffusion.

(1)

the size of the cube using get Smaller the Phigher the rate of diffusion is

Results Plus: Examiner Comments

This response refers to how far into the cube the sodium hydroxide permeated rather than the rate of the diffusion so 0 marks awarded.

(iv)

This question requires the candidate to state why the sodium hydroxide diffuses into the cube. Candidates were often confused about the idea that it was to do with acids and alkalis neutralising each other, but this is not the reason for diffusion.

This is another required practical and the candidates who have done this investigation will have an advantage over those who have not.

Diffusion is the movement of particles from where they are in high concentration to where they are in low concentration through the agar, which is permeable.

Please note agar is permeable. It does not have a partially permeable membrane.

(iv) Explain why the sodium hydroxide diffuses into the cube.

Because it is an alkali.

Results Plus: Examiner Comments

There were many comments about acids and alkalis, but these were irrelevant to the question. The question was about why the sodium hydroxide diffuses into the cube.

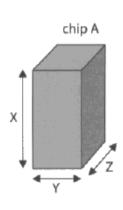
(iv) Explain why the sodium hydroxide diffuses into the cube.

(2)

Sodium hydroxicle dizzuses into the cube because it makes it weaker on the inside so it makes it easier to dizzuse the cube

Results Plus: Examiner Comments

This response is along the right lines but does not refer to the concentration differences inside and outside the cube, so no mark could be awarded.


Q30.

(i)

In this question, the formula for calculating surface area was given and candidates were asked to calculate the surface area of chip B. Many candidates completed the mathematical calculation successfully and were awarded the full 2 marks for the correct answer, 48 or 48.0. The most common error seen related to the values XY, XZ and YZ being added together rather than the correct process of multiplying the values. Occasionally, candidates calculated the surface area of chip A, which was already given in Figure 12.

Figure 11 shows two potato chips.

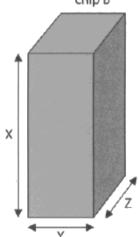


Figure 11

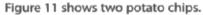
Figure 12 shows some information about each potato chip.

potato chip	length of X	length of Y in cm	length of Z	total surface area of four sides in cm ²	total surface area of top and bottom in cm ²	total surface area of chip in cm ²
Α	3.0	1.5	1.5	18.0	4.5	22.5
В	5.0	2.0	2.0	?	?	?

Figure 12

Total surface area = 2XY + 2XZ + 2YZ

$$(2 \times 5 \times 1) + (2 \times 5 \times 1) + (2 \times 2 \times 2)$$


$$= (80)$$

Results Plus: Examiner Comments

This answer scores 1 mark. The candidate has substituted into the formula correctly, but the evaluation is incorrect.

Results Plus: Examiner Tip

Always check your answers to maths questions.

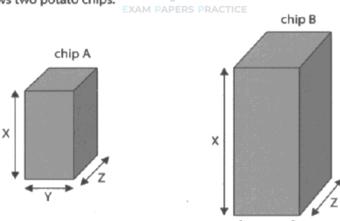
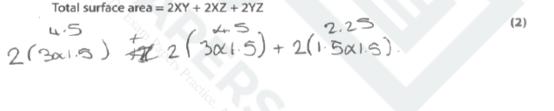



Figure 11

Figure 12 shows some information about each potato chip.

potato chip	length of X in cm	length of Y in cm	length of Z in cm	total surface area of four sides in cm ²	total surface area of top and bottom in cm ²	total surface area of chip in cm ²
Α	3.0	1.5	1.5	18.0	4.5	22.5
В	5.0	2.0	2.0	?	?	?

Figure 12

total surface area = 22.5 cm²

Results Plus: Examiner Comments

This response does not score any marks. The candidate has calculated the surface area of potato chip A instead of potato chip B.

(ii)

This question required candidates to provide an explanation as to why potato chip B had a greater increase in mass. For marking point 1, candidates needed to give a comparative idea for chip B, for example, that it had a larger, greater, bigger or more surface area. Many candidates could do this successfully. The idea of potato chip B having a higher solute concentration or lower water potential than chip A was also accepted. Answers which suggested a larger surface area:volume ratio were not accepted, because this is incorrect.

For marking point 2, candidates needed to refer to the idea that more water is going into potato chip B. Responses which indicated that chip B soaked up more water were accepted. Just the idea of water entering by osmosis was insufficient, as this also occurs in chip A as well.

Candidates were less successful in giving an appropriate explanation.

(iii)

In this question, candidates were required to explain what would happen to the cells of chip A if the chip was placed in a concentrated salt solution. This proved to be a very challenging question for many candidates. For marking point 1, candidates had to identify that the cells in chip A would lose water, become plasmolysed, get smaller, shrink or lose mass to gain marks on the linked explanation.

Marking point 2 was for osmosis; the use of the term 'diffusion' was ignored. Marking point 3 could be obtained by referring to the solute concentration gradient or the idea of water potential. Water concentration was accepted, as specific knowledge of water potential itself is not required, although candidates who used this concept were usually successful in obtaining full marks. Candidates who scored marks for this question were frequently successful in obtaining the full 3 marks.

Explain what will happen to the cells in potato chip A.

(On Contracted 8alt - low we ter potential.

The nater in the cell more from 9

high water potential in the cell to the a low water pontential in the concentrated and the concentrated and the concentrated and the concentrated and the cells will shrink.

Results Plus: Examiner Comments

This answer scores 2 marks. There is a comment about cells shrinking for marking point 1 and a correct reference to water moving due to differences in water potential for marking point 3. Water movement by osmosis has not been mentioned, so marking point 2 has not been awarded.

Results Plus: Examiner Tip

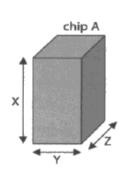
Remember that water moves into and out of cells by osmosis.

Results Plus: Examiner Comments

This response scores 1 mark for the idea that mass will be lost. The reference to salt solution is too vague to be creditworthy.

Q31.

(i)


In this question, the formula for calculating surface area was given and candidates were asked to calculate the surface area of chip B.

Most candidates completed the mathematical calculation successfully and were awarded the full 2 marks for the correct answer, 48 or 48.0.

A common error in this guestion related to the values XY, XZ and YZ being added together rather than the correct process of multiplying the values. In some cases, candidates calculated the surface area of chip A, which was already given.

Figure 5 shows two potato chips.

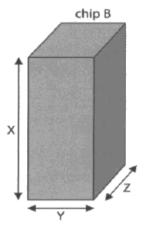


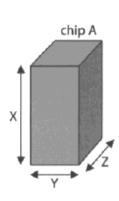
Figure 5

Figure 6 shows some information about each potato chip.

potato	length of X in cm	length of Y in cm	length of Z in cm	total surface area of four sides in cm ²	total surface area of top and bottom in cm²	total surface area of chip in cm²
Α	3.0	1.5	1.5	18.0	4.5	22.5
В	5.0	2.0	2.0	?	?	?

Figure 6

Total surface area = 2XY + 2XZ + 2YZ


Results Plus: Examiner Comments

This response was awarded the full 2 marks for showing the numbers substituted into the equation and the correct answer.

total surface area =

Figure 5 shows two potato chips.

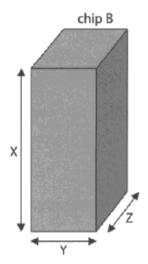


Figure 5

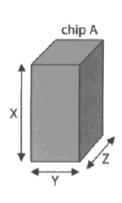
Figure 6 shows some information about each potato chip.

potato chip	length of X	length of Y	length of Z in cm	total surface area of four sides in cm ²	total surface area of top and bottom in cm ²	total surface area of chip in cm ²
Α	3.0	1.5	1.5	18.0	4.5	22.5
В	5.0	2.0	2.0	?	?	?

Figure 6

Total surface area = 2XY + 2XZ + 2YZ

$$(2 \times 5.0 \times 2.0) + (2 \times 5.0 \times 2.0) + (2 \times 2.0 \times 2.0)$$
= 78


total surface area = 78

Results Plus: Examiner Comments

This response was awarded one mark for substituting the numbers into the equation, but the answer is incorrect.

Figure 5 shows two potato chips.

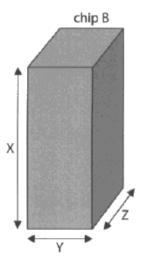


Figure 5

Figure 6 shows some information about each potato chip.

potato chip	length of X	length of Y	length of Z in cm	total surface area of four sides in cm ²	total surface area of top and bottom in cm ²	total surface area of chip in cm ²
Α	3.0	1.5	1.5	18.0	4.5	22.5
В	5.0	2.0	2.0	?	7	?

Figure 6

Total surface area =
$$2XY + 2XZ + 2YZ$$
 $x = 5.0$
Surface $2(5+2)+2(5+2)+2(2+2)$ $y = 2.0$
 $2(2)$ $2(2)$ $2(3)$

Results Plus: Examiner Comments

This response was not awarded any marks as the substituting into the equation is incorrect. This was one of the main errors seen for those candidates who did not gain credit on this question.

(ii)

This question required candidates to provide an explanation as to why potato chip B had a greater increase in mass. For marking point 1, candidates were required to give a comparative idea for chip B, for example, that is was larger, greater or bigger. Suggestions of chip B having a higher solute concentration or lower water potential than chip A were also accepted.

Answers which suggested a larger surface area:volume ratio were incorrect. For marking point 2,

candidates needed to refer to the notion that more water was going into potato chip B. Responses which just referred to the idea of water entering by osmosis were not sufficient as the process also occurs in chip A. Therefore, for marking point 2, candidates must indicate more water going into potato chip B.

(ii) The potato chips were placed in distilled water for 20 minutes.

Figure 7 shows the increase in mass of each potato chip.

potato chip	increase in mass in grams
A	0.1
В	0.3

Figure 7

Explain why potato chip B has a greater increase in mass than potato chip A.

(2)

It has a bigger surface area, as a result more water goes in to the potato chip by comoris. More water in means that the increase in mass is greater.

Results Plus: Examiner Comments

This response has been awarded the full 2 marks for reference to a bigger surface area and more water moving into the chip by osmosis for the explanation.

(ii) The potato chips were placed in distilled water for 20 minutes.

Figure 7 shows the increase in mass of each potato chip.

potato chip	increase in mass in grams
A	0.1
В	0.3

Figure 7

Explain why potato chip B has a greater increase in mass than potato chip A.

(2)

The increased surface area increases the chances for asmosis into the chip.

Results Plus: Examiner Comments

This response is worthy of one mark for reference to the increased surface area. Osmosis into the chip is not sufficient to explain the mass increase.

(iii)

In this question, candidates were required to explain what would happen to the cells of chip A if it was placed in a concentrated salt solution for a total of 3 marks.

For marking point 1, candidates were required to refer to the notion that the cells in chip A would lose water or become plasmolysed. Similarly, reference to chip A getting smaller, shrinking or losing mass were also acceptable responses.

For marking point 2, candidates were required to refer to the notion of water being released by osmosis. The use of the term 'diffusion' by some candidates was ignored.

For marking point 3, candidate responses needed to refer to the solute concentration gradient or the idea of water potential. However, the notion of water concentration was also accepted, as knowledge of water potential itself was not required.

Most candidates were successful in achieving full marks for this question. However, candidates who were awarded 2 marks had often neglected using the term osmosis or were unable to provide a clear explanation as to why the water moved out of chip A.

(iii) Potato chip A is transferred from the distilled water into a concentrated salt solution.

(3)

Explain what will happen to the cells in potato chip A.

The cous in chip A will lose water as osmosis will occur transferring water from the highly concentrated cells to the lower water concentration in the salt solution. They was lose trugidity and potentially lose their rigid shape

Results Plus: Examiner Comments

This response is worthy of two marks for reference to losing water and osmosis. The description of osmosis has an error as the potato cells are not highly concentrated in comparison to the salt solution. The explanation is not accurate enough for the full three marks.

(iii) Potato chip A is transferred from the distilled water into a concentrated salt solution.

Explain what will happen to the cells in potato chip A.

The cells will decrease in size, as the salt in the salt solution will draw out the water from them, meaning they contain less water, and so will become smaller.

Results Plus: Examiner Comments

This response was awarded 1 mark for the idea of the water being drawn out of them, or decrease in size. The answer does not explain the change to the cells using scientific knowledge of osmosis.

(iii) Potato chip A is transferred from the distilled water into a concentrated salt solution.

Explain what will happen to the cells in potato chip A.

(3)

polato crip A iii lose mass as the voter malecules

no the cells of potato chip A vill go from the high

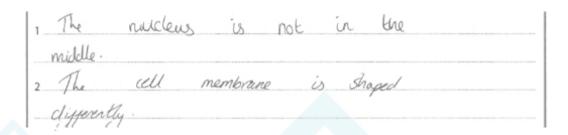
concentration of voter to the low concentration of valid

in the soit solution through the portion, permeable

mandoore of the potatoskin, this is to most is.

Results Plus: Examiner Comments

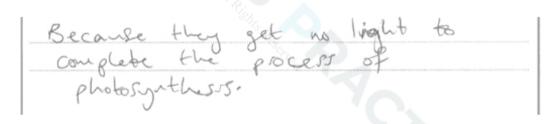
This response was awarded the full 3 marks for stating what will happen to the cells in chip A and explaining it using scientific knowledge on osmosis.


- Q32. No Examiner's Report available for this question
- Q33. No Examiner's Report available for this question

034.

(a) (i)

Generally most students gained the full two mark points for noticing that yeast have a nucleus and a vacuole where these are absent in bacteria. Most common mistakes were that bacteria don't have a cell wall or they don't have cytoplasm. Other incorrect responses included reference to mitochondria and also reference to tails rather than flagella.



Results Plus: Examiner Comments

This candidate has confused plant cells here by referring to the nucleus not being in the centre. In this case it is the fact that the bacterial cell does not have a nucleus. The cell membrane being a different shape is probably true of almost every cell so is not creditable for the mark.

(a) (ii)

On the whole this question was very well answered. The vast majority gained the one mark for this question. The few students who didn't get the mark confused photosynthesis with respiration.

Results Plus: Examiner Comments

Clear correct response where the candidate has responded regarding the action of photosynthesis.

Results Plus: Examiner Comments

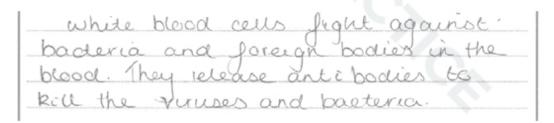
This is the alternative answer for this question. The candidate has not referred to photosynthesis but has recognised that the organelle for photosynthesis is missing i.e. chloroplast.

(b) (i)

A large number of students did gain the full 2 marks for this question. The use of standard form did confuse some students but more marks were lost due to the incorrect data being selected than by the calculation being incorrect. Several candidates tried to convert the standard form and then convert it back again; quite often they were then out by an order of magnitude. It is essential that the maths skills stated in the front of the specification are covered so as not to disadvantage candidates.

$$7 \times 10^{\circ} = 70$$

$$5 \times 10^{\circ} = 50$$


$$\text{answer} = 20$$

Results Plus: Examiner Comments

This illustrates the importance of selecting the correct data and showing that you have collected the correct data. This candidate gained 1 mark despite not managing the correct calculation.

(b) (ii)

Most students were able to get at least one mark by stating that white blood cells were part of the immune response or words to that effect, but many weren't clear about the actual functions of white blood cells. 'White blood cells are antibodies' was a common response as was that they 'gobble up/eat' pathogens which shows poor use of scientific terminology. Candidates' description of phagocytosis was very poor. The antibody production mark was much more accessible for these candidates. Quite a few students also attributed functions of red blood cells and platelets to white blood cells such as carrying O2, CO2 and waste or causing clotting and repairing wounds.

Results Plus: Examiner Comments

This response gained both marks but fight against bacteria is really not the scientific rigour we are expecting at GCSE. In this case as the mark was given for defence against disease this became an acceptable response. The second mark was given for the production of antibodies.

Results Plus: Examiner Tip

Try to use scientific terminology when answering this type of question. The term phagocytosis is the correct term for the action of phagocytes on pathogens in the body.

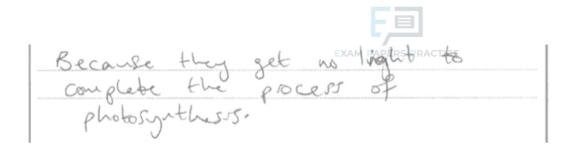
(b) (iii)

The main problem with the answers to this question was that they were referring to breathing difficulties or asthma rather than simply saying short of breath. A small number of students confused anaemia with sickle cell anaemia. The most common correct answer was that there would simply be less oxygen in circulation but some good application of knowledge was also rewarded for responses related to the person doing more anaerobic respiration.

Q35.

(a) (i)

Generally most students gained the full two mark points for noticing that yeast have a nucleus and a vacuole where these are absent in bacteria. Most common mistakes were that bacteria don't have a cell wall or they don't have cytoplasm. Other incorrect responses included reference to mitochondria and also reference to tails rather than flagella.


The	nucleu	s is	not	in	the
middle.		de Contraction de la contracti			
11.	cell	membrano	is	Shap	red

Results Plus: Examiner Comments

This candidate has confused plant cells here by referring to the nucleus not being in the centre. In this case it is the fact that the bacterial cell does not have a nucleus. The cell membrane being a different shape is probably true of almost every cell so is not creditable for the mark.

(a) (ii)

On the whole this question was very well answered. The vast majority gained the one mark for this question. The few students who didn't get the mark confused photosynthesis with respiration.

Results Plus: Examiner Comments

Clear correct response where the candidate has responded regarding the action of photosynthesis.

They do not have chloroplasts.

Results Plus: Examiner Comments

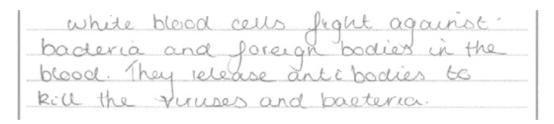
This is the alternative answer for this question. The candidate has not referred to photosynthesis but has recognised that the organelle for photosynthesis is missing i.e. chloroplast.

(b) (i)

A large number of students did gain the full 2 marks for this question. The use of standard form did confuse some students but more marks were lost due to the incorrect data being selected than by the calculation being incorrect. Several candidates tried to convert the standard form and then convert it back again; quite often they were then out by an order of magnitude. It is essential that the maths skills stated in the front of the specification are covered so as not to disadvantage candidates.

 $7 \times 10^{10} = 70$ $5 \times 10^{10} = 50$ answer = 20

Results Plus: Examiner Comments


This illustrates the importance of selecting the correct data and showing that you have collected the correct data. This candidate gained 1 mark despite not managing the correct calculation.

(b) (ii)

Most students were able to get at least one mark by stating that white blood cells were part of the immune response or words to that effect, but many weren't clear about the actual functions of white blood cells. 'White blood cells are antibodies' was a common response as was that they

'gobble up/eat' pathogens which shows poor use of scientific terminology. Candidates' description of phagocytosis was very poor. The antibody production mark was much more accessible for these candidates. Quite a few students also attributed functions of red blood cells and platelets to white blood cells such as carrying O2, CO2 and waste or causing clotting and repairing wounds.

Results Plus: Examiner Comments

This response gained both marks but fight against bacteria is really not the scientific rigour we are expecting at GCSE. In this case as the mark was given for defence against disease this became an acceptable response. The second mark was given for the production of antibodies.

Results Plus: Examiner Tip

Try to use scientific terminology when answering this type of question. The term phagocytosis is the correct term for the action of phagocytes on pathogens in the body.

(b) (iii)

The main problem with the answers to this question was that they were referring to breathing difficulties or asthma rather than simply saying short of breath. A small number of students confused anaemia with sickle cell anaemia. The most common correct answer was that there would simply be less oxygen in circulation but some good application of knowledge was also rewarded for responses related to the person doing more anaerobic respiration.

Q36.

(a)(i)

The majority of candidates correctly identified the nucleus on the diagram of the sperm cell. Whilst some candidates incorrectly stated that the structure was the acrosome which was an understandable error, a significant number labelled it as DNA or genetic material implying that they had not noticed that the question asked them to name a structure.

(b)

This item required candidates to define fertilisation. The majority of candidates stated that it was when sperm and egg cell fuse with many marks being gained from stating that a zygote is formed with many candidates also stating that the gametes are haploid / fertilised egg is diploid. Many candidates wrote answers that covered all of the marking points. It was good to see that candidates knew the details of this area of biology in detail. Candidates lost marks by being vague, for example, stating that the sperm and egg cell meet or referring to sperm and egg as just gametes and the zygote as any later stage of development form embryo to baby as illustrated in the second clip below.

(b) Sperm cells are involved in fertilisation.

Define fertilisation.

(2)

Fertilisation is when two haplaid gametes meet and combine. The gametes are a sperm and egg cell. Once ambined they will pleame a diploid cell that will graw and reproduce.

Results Plus: Examiner Comments

This candidate has gained both marks through adding detail to the basic definition of fertilisation. They do say that sperm meets the egg; however, although meet is insufficient for credit, the candidate gets the mark as they then qualify the process with the word combine.

Results Plus: Examiner Tip

When revising for a topic that is sequential, make sure that your learning techniques cover the process, the related scientific terminology and further details that will allow you to be credited for subsequent points made.

testilisation is when (somete cells) are egg cell and a sperm cell combine to make an embryo.

Results Plus: Examiner Comments

Here the candidate has lost a mark by referring to the fertilised egg as an embryo rather than the correct term, zygote.

Results Plus: Examiner Tip

In sequences like this, ensure that your revision includes all the stages with emphasis on including and learning the relevant scientific terminology.

(c)(i)

To gain both marks, the candidate had to mention both respiration and releasing energy. 'Creates / makes' disqualified the energy mark as it is scientifically wrong. The latter part was the main reason why more candidates scored 1 mark on this item, with roughly one fifth getting both marks. Common incorrect responses included stating that the mitochondria controlled the cell and some that said it glued the sperm to the egg. A few candidates missed the key part of the question as a function and talked about the mitochondria in terms of structure.

(c) (i) Describe the function of mitochondria.	
	(2)
in cells mit-ochondria is where most of the i	reaction 5
for respiration take place respiration releat	ses energy.
so the mitoconordina releases energy in the	
The state of the s	

Results Plus: Examiner Comments

An example of a good response showing a clear understanding of the function of mitochondria.

(c) (i) Describe the function of mitochondria.

Mitochondria are used for aerobic respiration in all so the au au are and are all so the au au are are energy.

Results Plus: Examiner Comments

'Creating energy' is incorrect science so was not credited, the candidate does, however, get the respiration mark.

Results Plus: Examiner Tip

Use a good text / revision guide when revising so that basic definitions and scientific ideas are accurate.

(c)(ii)

Marks were roughly evenly spread between 0, 1 and 2 on this item. Candidates had to explain how a mutation produces a different protein to gain credit in this item. The candidates here showed that they knew the related science in detail although many of them wrote confused answers that did not allow credit. Many excellent answers were seen explaining in detail how a change in the base sequence related to changing an amino acid with germane details about protein synthesis and it was pleasing to see a few candidates naming a specific type of mutation with deletion being the most common one seen. However, a significant number of candidates misread the question as, 'what is the effect of a changed protein', with some starting off well by stating that the mutation was a change in the base sequence but then going on to describe the lock and key theory and how the protein would not digest food if it was changed in shape.

(ii) Gene mutations in DNA can produce abnormal mitochondria.

Explain how a gene mutation can produce a different protein.

(2)

DNA is the used to give instructions & of for how to make protein, there for is the DNA is aidderent so one the instructions it gives to make protein, which which leads to a different protein being made.

Results Plus: Examiner Comments

The candidate here gains no marks as the definition of a mutation 'the DNA is different' is too vague with the rest of the response only restating the stem of the question saying that the protein will be different.

Results Plus: Examiner Tip

When revising, practise answering examination questions and have them checked by a teacher who can give guidance on how to ensure that the response answers the question.

(a)(i)

The majority of candidates correctly identified the nucleus on the diagram of the sperm cell. Whilst some candidates incorrectly stated that the structure was the acrosome which was an understandable error, a significant number labelled it as DNA or genetic material implying that they had not noticed that the question asked them to name a structure.

(b)

This item required candidates to define fertilisation. The majority of candidates stated that it was when sperm and egg cell fuse with many marks being gained from stating that a zygote is formed with many candidates also stating that the gametes are haploid / fertilised egg is diploid. Many candidates wrote answers that covered all of the marking points. It was good to see that candidates knew the details of this area of biology in detail. Candidates lost marks by being vague, for example, stating that the sperm and egg cell meet or referring to sperm and egg as just gametes and the zygote as any later stage of development form embryo to baby as illustrated in the second clip below.

(b) Sperm cells are involved in fertilisation.

Define fertilisation.

(2)

Fertilisation is when two haplaid gametes meet and combine. The gametes are a sperm and egg cell. Once ombined they will become a diploid cell that will grow and reproduce.

Results Plus: Examiner Comments

This candidate has gained both marks through adding detail to the basic definition of fertilisation. They do say that sperm meets the egg; however, although meet is insufficient for credit, the candidate gets the mark as they then qualify the process with the word combine.

Results Plus: Examiner Tip

When revising for a topic that is sequential, make sure that your learning techniques cover the process, the related scientific terminology and further details that will allow you to be credited for subsequent points made.

Results Plus: Examiner Comments

Here the candidate has lost a mark by referring to the fertilised egg as an embryo rather than the correct term, zygote.

Results Plus: Examiner Tip

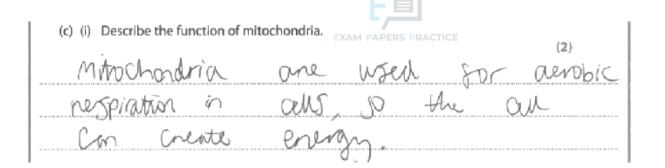
In sequences like this, ensure that your revision includes all the stages with emphasis on including and learning the relevant scientific terminology.

(c)(i)

To gain both marks, the candidate had to mention both respiration and releasing energy. 'Creates / makes' disqualified the energy mark as it is scientifically wrong. The latter part was the main reason why more candidates scored 1 mark on this item, with roughly one fifth getting both marks. Common incorrect responses included stating that the mitochondria controlled the cell and some that said it glued the sperm to the egg. A few candidates missed the key part of the question as a function and talked about the mitochondria in terms of structure.

(c) (i) Describe the function of mitochondria.

(2)


In Celis mitochondria is whose mast of the reactions

for respiration take place respiration releases energy.

So the mitochondria releases energy in the cell

Results Plus: Examiner Comments

An example of a good response showing a clear understanding of the function of mitochondria.

Results Plus: Examiner Comments

'Creating energy' is incorrect science so was not credited, the candidate does, however, get the respiration mark.

Results Plus: Examiner Tip

Use a good text / revision guide when revising so that basic definitions and scientific ideas are accurate.

(c)(ii)

Marks were roughly evenly spread between 0, 1 and 2 on this item. Candidates had to explain how a mutation produces a different protein to gain credit in this item. The candidates here showed that they knew the related science in detail although many of them wrote confused answers that did not allow credit. Many excellent answers were seen explaining in detail how a change in the base sequence related to changing an amino acid with germane details about protein synthesis and it was pleasing to see a few candidates naming a specific type of mutation with deletion being the most common one seen. However, a significant number of candidates misread the question as, 'what is the effect of a changed protein', with some starting off well by stating that the mutation was a change in the base sequence but then going on to describe the lock and key theory and how the protein would not digest food if it was changed in shape.

(ii) Gene mutations in DNA can produce abnormal mitochondria.

Explain how a gene mutation can produce a different protein.

DNA is used to give instructions to obtain there for is the DNA is different so one the instructions it gives to make protein, which which leads to a different protein being made.

Results Plus: Examiner Comments

The candidate here gains no marks as the definition of a mutation 'the DNA is different' is too vague with the rest of the response only restating the stem of the question saying that the protein will be different.

Results Plus: Examiner Tip

When revising, practise answering examination questions and have them checked by a teacher who can give guidance on how to ensure that the response answers the question.

Q38.

(i)

There are some misconceptions about the use of a coverslip with many candidates believing that it is used to allow light to shine onto the sample which is not the case. Acceptable responses were those which referred to keeping the sample still or keeping it flat. Also acceptable was the idea of protecting the sample from damage. Protecting the sample from bacteria was not acceptable as a marking point.

A student compared the number of stomata on the upper and lower surfaces of a leaf.

She completed a leaf peel as shown in Figure 5.

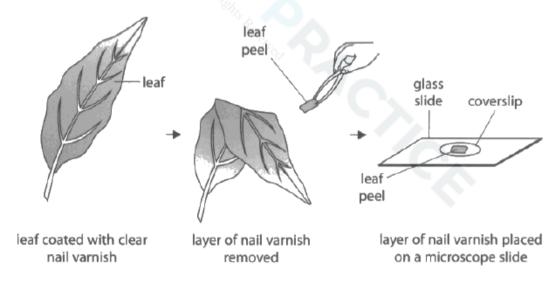


Figure 5

(1)

The layer of nail varnish shows an impression of the cells on the surface of the leaf.

(i) State why a coverslip is placed on top of the leaf peel.

to hold the leaf peal in place

Results Plus: Examiner Comments

This was acceptable for preventing the leaf from moving for 1 mark.

A student compared the number of stomata on the upper and lower surfaces of a leaf.

She completed a leaf peel as shown in Figure 5.

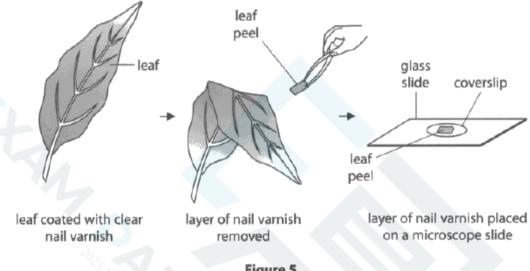
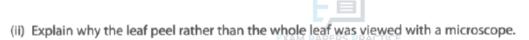


Figure 5

The layer of nail varnish shows an impression of the cells on the surface of the leaf.

(i) State why a coverslip is placed on top of the leaf peel.


To prevent the impression being altered

Results Plus: Examiner Comments

Prevent the impression being altered is equivalent to protect the specimen, so it is not damaged by the objective lens was also acceptable for 1 mark.

(ii)

The leaf peel was observed because it was thinner and light could pass through more easily. Common errors by candidates were the idea that the leaf was too big: this was not acceptable. The idea that the stomata could be seen was acceptable for a mark.

Because the microscope can only took at a small section at one time, you would not be cable to view the whole leaf as it is too big. The Cells are also more visible on a leaf peel.

Results Plus: Examiner Comments

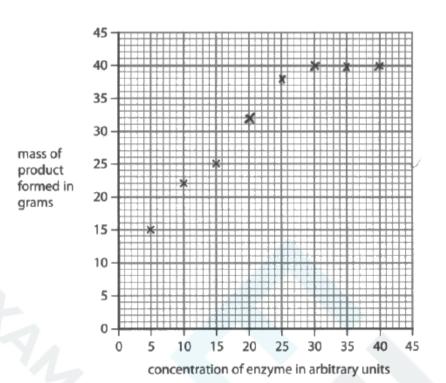
This was awarded 1 mark for the idea that the cells could be seen, also acceptable was that the stomata/guard cells were visible.

(ii) Explain why the leaf peel rather than the whole leaf was viewed with a microscope.

leaf would be too thick to view under microscope as light coudn't trouble through it while the llaf peal was thin enough to allow light through it and be seen when a microscope.

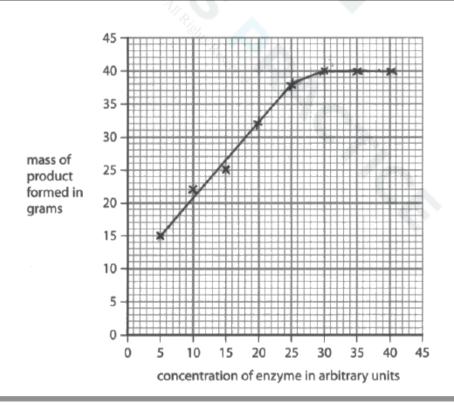
Results Plus: Examiner Comments

This response attains both marks for the leaf being too thick which is the reverse argument that the leaf peel is thin enough to see and that light can pass through making the cells visible.


Q39.

This question required candidates to plot five points on a graph and then draw a line to show the trend in the data. While the majority of candidates were successful in achieving the first marking point, many candidates did not go on to draw a line, which precluded them from gaining marking point 2. A line showing a steady increase, then levelling off at 30 arbitrary units was required. Dot-todot lines were accepted.

Complete the graph by plotting the points and drawing a line to show the trend in the data.


(2)

The first three points have been plotted for you.

Results Plus: Examiner Comments

This response scores 1 mark for plotting all the points correctly. The candidate has not drawn a line to show the trend, so the second marking point cannot be awarded.

For more help, please visit www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

Results Plus: Examiner Comments

This answer was awarded the full 2 marks. The candidate has plotted the points accurately and has drawn a suitable line to show the trend in the data. Lines showing a steady increase that levelled off at 30 arbitrary units were accepted.

Q40.

This fill in the gaps question from the list of words supplied allowed most candidates to gain one of the two marks available with the two answers, smaller (surface area) and diffusion being seen in roughly equal amounts. Almost as many candidates gained both marks available.

- Q41. No Examiner's Report available for this question
- Q42. No Examiner's Report available for this question
- Q43. No Examiner's Report available for this question

Q44.

Many candidates correctly stated that an egg cell has a large amount of cytoplasm so that it can supply the developing zygote / embryo with nutrients, although food was also credited. Of those candidates who did not score the mark here, some stated that the cytoplasm supplied mitochondria, which although true does not answer the question as to why the cytoplasm is large. Others disqualified their answer of more nutrients by stating that the nutrients give the sperm energy to swim to the egg.

Q45.

Many candidates correctly stated that an egg cell has a large amount of cytoplasm so that it can supply the developing zygote / embryo with nutrients, although food was also credited. Of those candidates who did not score the mark here, some stated that the cytoplasm supplied mitochondria, which although true does not answer the question as to why the cytoplasm is large. Others disqualified their answer of more nutrients by stating that the nutrients give the sperm energy to swim to the egg.

Q46. No Examiner's Report available for this question

Q47.

Descriptions of a test to identify fat were usually confused with other food tests and only a small number of candidates scored marks.

Q48.

Most candidates were able to recall the test for fat as the emulsion test. Candidates had to include a reference to the use of ethanol and water to obtain the first mark point and then give the result for the second mark, although a reference to the emulsion test was sufficient to get marking point 2. Candidates who did not score on this item identified the incorrect food test reagent.

Q49.

This question required candidates to consider how to test for the presence of protein. The expected answer was to use biuret reagent (solution) which turns purple if protein is present. There was much confusion between biuret and Benedict's reagent; in addition to this, candidates also gave the iodine or emulsion test as an answer. This is a required practical and candidates should have completed these food tests as part of the course.

Describe how a student could test a sample of urine for the presence of protein.

You could use the biviet test, it would the charge colour appropriate to the cimount of Protain present.

Results Plus: Examiner Comments

This is part of the answer to the question for $1\ \text{mark}$; the outcome of the test changing colour from blue to purple was needed for the second mark.

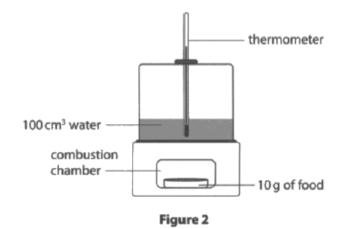
Describe how a student could test a sample of urine for the presence of protein.

A student could took a sample of wine for the proton prosence by using a universal hadrotory pH proto of where a low pH indicator the prosence of protons or if the indicator bocomes everyo, yollow or rod (as not) as some light grown-Also/a most

Results Plus: Examiner Comments

This was a common theme for many of the answers with various different food tests or pH testing being applied. This was not creditable.

Q50.

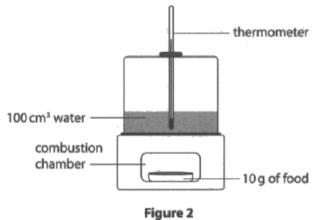

To gain full marks on this question candidates were required to identify that structure A contains mitochondria for respiration or to release energy and that the acrosome or enzymes are used to digest the egg cell membrane. Candidates need to avoid stating that energy is produced or created. Some incorrect responses gave the idea that the mitochondria store energy and that structure B was the nucleus.

Q51.

For this question candidates had to identify how the calorimeter in Figure 2 could be used to determine the energy content of 10 g of food. The first mark was for measuring the start and end temperature of the water or for using the thermometer to measure the temperature. The second mark was the idea of burning the food. Combusting or igniting the food were accepted but heat the food was insufficient. The final marking point was for using the temperature increase or a temperature change to calculate the energy content. The response needed to indicate that the temperature change or increase could be used to find, measure or calculate the energy content. Just the idea that the temperature rise is the energy content or shows the energy content was insufficient. The details of the calculation were not required, and the mark was awarded if it indicated the requirement for a calculation. A range of marks were awarded for this item but many higher ability candidates obtained full marks and even gave the correct calculation. Common errors that led to marks being lost were just the idea of measuring the end temperature of the water, heating the food rather than burning it and just indicating that the

Figure 2 shows a calorimeter.

Describe how this calorimeter can be used to find the energy content of 10 g of food.


measure the temp of water at the beginning then after the 10g of food has fully combusted mease the temp of water again calculate the change in temp of 100cm³ of water.

Results Plus: Examiner Comments

This candidate scored 2 marks for measuring the start and end temperature of the water and combusted the food was sufficient for marking point 2. Just calculating the difference in the temperature of the water was insufficient for marking point 3.

Describe how this calorimeter can be used to find the energy content of 10 g of food.

Fort, record the starting temperature is the water. Then
Set the sood alight when the water in the combustion
chamber when the sood sungle has completely temped they
record the temperature of the water again. We can then
use the surmula to work out the energy content:

energy content:

energy content:

Y+2

Results Plus: Examiner Comments

This scored full marks. The final mark needed the idea of calculating the energy content from the difference in the temperature of the water. The specific equation is not required although many candidates sitting the paper will also be studying physics and it was seen on a significant number of responses.

052.

Most candidates scored at least one mark on this item with many scoring both. Candidates are not naming the lenses on microscopes, but many recognise the need for a 40x lens and the need to focus the image. Some gave details on placing the slide on the stage and turning on the light which doesn't answer the question. Turning the wheel was not credited for focusing but the idea that the slide needs to move on the stage was sufficient.

Q53.	No Examiner's Report available for this question
Q54.	No Examiner's Report available for this question
Q55.	
urine. Gluc and turns	ion required candidates to apply their knowledge of food testing to the testing of cose was being tested so Benedict's reagent/solution should be used which is heated brick red in the presence of glucose. Other colours such as green and brown were also e. Candidates do confuse the biuret solution with Benedict's frequently.
Q56.	No Examiner's Report available for this question
Q57.	
mass of pr mass of pr and achiev	estion, candidates had to describe the effect that enzyme concentration has on the oduct formed. The first marking point was for a straightforward statement that the oduct increases as enzyme concentration increases. Many candidates were successful yed this mark but did not gain further marks by describing that the mass of product same, or levels off from 30 arbitrary units.
	Describe the effect that enzyme concentration has on the mass of product formed. (2)
	The higher the concentration of enzymes, the higher the mass. (possitive correlation)
.,,	enzques, the higher the was.
	(positive correlation)
Results P	lus: Examiner Comments

This answer scores 1 mark for describing the first part of the graph, (up to an enzyme concentration of 30 arbitrary units). The second and third marking points cannot be awarded as there is no reference to the line on the graph levelling off.

Results Plus: Examiner Tip

Always look at the number of marks available for a question and give a full description of the trend shown by a graph.

Q58.

In this question, few candidates could describe the function of a meristem in the growth of a plant, but more than half could describe, at least in part, how a microscope slide of a sample of cells could be prepared.

Q59.

- (i) This question required candidates to describe the function of the meristem in the growth of a plant. Growth is given in the question, so candidates needed to give more details on this. Most candidates who achieved full marks stated that the meristem was undifferentiated cells or contained stem cells which can become specialised rather than referring to the process of cell division by mitosis.
- (ii) This item was answered well by candidates of all abilities on the paper, recognizing the method required by one of the core practicals. Nearly all candidates gained marking point 1 for putting the cells onto the slide, higher ability students recognized this needed to be a thin section and the second mark for adding a stain was frequently given. Some candidates described adding a second slide on top, rather than naming the cover slip, but this was credited as a possible method they might have used in school.

Q60.

Candidates were asked to describe the laboratory test for protein. The majority described either the test for reducing sugar or starch with a small percentage gaining marks by stating that food is added to Biuret solution, and if there is protein in the food the biuret turns purple.

Mark Scheme

Q1.

Answer	Acceptable answers	Mark
An explanation including two of the following points:		(2)
• ref to specific shape (1)		
to bind to substrate / form enzyme substrate complex (1)		
• for reaction to take place / catalysed(1)		
• joining together {substrates / molecules} / break down {substrates / molecules} (1)		
ref to lock and key mechanism / hypothesis (1)		

Q2.

Answer	Acceptable answers	Mark
An explanation including two of the following points:	¹ C _A	(2)
• ref to specific shape (1)		
to bind to substrate / form enzyme substrate complex (1)		
for reaction to take place / catalysed(1)		
• joining together {substrates / molecules} / break down {substrates / molecules} (1)		
• ref to lock and key mechanism / hypothesis (1)		

Q3.

Question	Answer	Mark
Number		
(i)	use a water bath / description of a water bath	(1)
		AO1 2
1		

Question	Answer	Additional	Mark
Number		guidance	
(ii)	An explanation linking three from:		(3)
	enzymes have an optimum temperature (1)		AO2 1
	so temperature will affect the rate of enzyme activity / the time taken to produce 20cm³ of oxygen (1)		
	enzyme activity increases as temperature increases (up to the enzyme's optimum temperature) (1)		
	{enzymes / active sites} are denatured / enzyme activity stops at high temperatures (1)	70	
		accept hydrogen peroxide concentration is the independent variable, so other variables (such as temperature) must be controlled (1)	

Question Number	Answer EXAM	Additional ce guidance	Mark
(iii)	all 4 points plotted accurately		(2)
	(± half a small square) (1)		AO3 1a 1b
	smooth curve / dot-to-dot line drawn (1)		
	inte diawir(i)	ignore	
		extrapolations	

Question Number	Answer	Additional guidance	Mark
		guidance	
(iv)	A description including:		(3)
4	the time taken to collect 20 cm³ oxygen decreases as hydrogen peroxide concentration increases (1)	accept negative correlation	AO3 1a 1b
	the curve flattens (1) the correct use of data from the table (1)	data must be used not just quoted from the table	

Question number	Answer EXAM PAPERS P	Additional guidance	Mark
(i)	An answer including: • (the root tip) contains {meristem / dividing} cells (1) • for growth (1)	reject meiosis	(2) AO1 1

Question number	Answer	Additional guidance	Mark
(ii)	An answer combining: • switch the lamp on	accept adjust the mirror	(2) AO1 2
	 start with the lowest objective lens / look through the eyepiece lens (1) use the (focusing) wheel to obtain a clear image (1) 	accept start with x4 / x10 objective lens	

Question number	Answer	Additional guidance	Mark	
2(a)(iii)	use a stain / named stain	accept dye /	(1)	
	ase a stain / named stain	iodine	AO3 3b	
Q5.			Ć.	
Que				Ma

Q5.

Question number	Answer	Mark
(i)	all the starch has been converted into glucose / all the starch has reacted with the amylase / all the starch is	(1)
	digested (1)	AO3 2a

Question number	Answer EXAM PAPERS PRACTICE	Mark
(ii)	 Any two from: pH of the solution (1) concentration of amylase (1) concentration of starch (1) amount of mixing (1) size of the tube used (1) time interval must be the same (1) 	(2) AO2 2

Question number	Answer	Additional guidance	Mark
(iii)	it is a control/to check that starch doesn't breakdown into glucose without amylase (1)	ignore control variable ignore allow results to be compared	(1) AO2 2

Q6.

Question number	Answer	Additional guidance	Mark
(i)	Substitution		(2) AO3.1
	(50 - 30 =) 20 (1)		
	(20 ÷ 50 × 100 =) -40(%)	Accept 40%	
	** 111 Ries	Award full marks for answer without working	

Question number	Answer	Additional guidance	Mark
(ii)	Any two from: variety of potato (1) mass of potato (1) age of potato (1) temperature (1) storage conditions/humidity (1)	accept type / species accept weight/size	(2) AO1.2
		accept potato cells taken from the same part of each potato	

Question number	Indicative content EXAM PA	Additional guidance	Mark
(iii)	for energy / respiration	ignore make / produce energy	(1) AO2.1
		accept to produce ATP	

Q7.

Question number	Answer	Additional guidance	Mark
(i)	Substitution		(2)
	(50 - 30 =) 20 (1)		AO2.1
	$(20 \div 50 \times 100 =) - 40(\%)$	Accept 40%	
	33	award full marks for answer without working	

Question number	Answer	Additional guidance	Mark
(ii)	Any two from:		(2)
	 variety of potato (1) mass of potato (1) age of potato (1) temperature (1) storage conditions/humidity (1) 	accept type / species accept weight/size	AO2.2
		accept potato cells taken from the same part of each potato	

Question number	Indicative content	Additional guidance	Mark
(iii)	for energy / respiration	ignore make / produce energy	(1) AO2.1
		accept to produce ATP	

	- 1
	=

Question number	Indicative content EXAM PA	Additional guidance	Mark
(iv)	Any two from:		(2)
	enzyme / amylase / carbohydrase (1)	accept maltase	AO2 1
	starch fits into the active site (1)		
	 bonds (between glucose molecules in starch) broken (1) 	accept polymer broken down into monomers	

Q8.

Question number	Answer	Additional guidance	Mark
(i)	starch is present / iodine reacts with starch (1)	accept starch hadn't reacted / hadn't been broken down (by liquids from mouth and stomach)	(1) 1.12 AO1

Question number	Answer	Additional guidance	Mark
Hullibel	Str. D		
(ii)	An answer linking three from:	Accept reverse	(3)
	Ç/	argument for both marking points in test	A03 2a+2b
	 in test tube 1 starch has 	tube two	
	been broken down (1)		
	in test tube 2 starch has not been broken down (1)	accept starch is still present in tube 2	
	because amylase is present in the mouth / no amylase in the stomach (1)	accept carbohydrase	

Q9.

Question number	Answer	Additional guidance	Mark
(i)	Substitution 3 ÷ 120 (1)		(2)
	0.025 (mm)	award two marks for correct answer with	AO2 1
		no working	

Question number	Answer	Additional guidance	Mark
(ii)	Repeat (the investigation)	accept compare with results from other groups	(1) AO3 3b

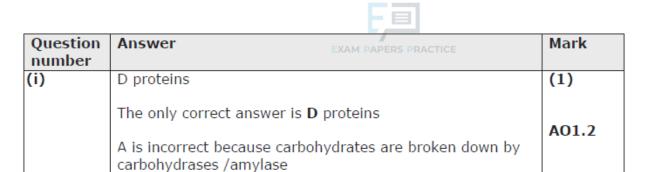
Q10.

Question number	Answer	Additional guidance	Mark
(i)	 Used as a control / to compare with the results of 		(1)
	the other tubes		AO1.2

Question number	Answer	Mark
(ii)	Any two variables from:	(2)
	• temperature (1)	AO1.2
	age / variety of potato (1)	
	 {size / volume / length / width / shape / mass / surface area} of chip (before investigation) (1) 	
	volume of solution (1)	
	time left in solutions (1)	

Question number	Answer EXAM PAPERS PRACTICE	Mark
(iii)	An explanation including:	(3) AO1.2
	 There is a higher concentration of sodium chloride outside (the cell) than inside / higher concentration of water molecules inside (the cell) than outside (1) 	A01.2
	 water moves out of {cells / chips} / into (sodium chloride) solution (1) 	
	by <u>osmosis</u> (1)	

Q11.


Question number	Answer	Mark
(i)	A they have membrane-bound organelles	(1) AO1 1
	The only correct answer is A	
	B is not correct because they have a nucleus	
	C is not correct because they do not have a cell wall	
	D is not correct because this is not a specific feature of eukaryotic cells	

Question number	Answer	Additional guidance	Mark
(ii)	genetic analysis / based on {DNA/genetics} / DNA of Archaea more similar to eukaryotes (1)	accept more knowledge because of better microscopes	(1) AO1 1

Question number	Answer	Additional guidance	Mark
(i)	A description that combines the following points to provide a logical description of the method:		(4)
	use Benedict's reagent to test for glucose (1)		AO3 3a
	add it to the solution and heat, if glucose is present it turns green/brick red (1)	accept orange/brown for brick red	
	use iodine to test for starch (1)		
	add it to the solution and if starch is present it turns blue/black (1)		

Question	Answer Additional guidance		Mark
number	Allswei	Additional galdance	Mark
(ii)	An explanation linking two from the following:		(2)
	(substances) move through the membrane by <u>diffusion</u> (1)		A02.2
	from where they are in high concentration to where they are in low concentration / down a concentration gradient (1)		
	OR The state of th		
	the dialysis membrane acts as a cell membrane (1)	accept dialysis machine for cell membrane	
	 shows small molecules /glucose moving through the membrane (1) 		

Q13.

B is incorrect because lipids need to be digested by lipase

C is incorrect because fibre is not broken down by

enzymes

Question number	Answer	Additional guidance	Mark
(ii)	An explanation linking the following:		(2)
E	to increase the surface area of the food (1)	accept the food molecules are smaller	AO2.2
	so trypsin will break down more protein (1)	accept there is a faster rate of	

Q14.

Question Number	Answer	Mark
(i)	C the volume of milk and the concentration of chymosin	(1) AO2 2
	The only correct answer is C	
	A is not correct because time is being measured	
	B is not correct because the temperature is being changed	
	D is not correct because the temperature is being changed	

Question Number	Answer	Additional Guidance	Mark
(ii)	An explanation linking two from:		(2)
	40°C is the {optimum / closer to the optimum} / there is a faster rate of reaction (1)	accept the enzyme works faster	AO2 1
	because as temperature increases (kinetic) energy increases (1)		
	more chance of collision (between the chymosin and the milk protein) (1)		
	more enzyme-substrate complexes are formed (1)		

Question Number	Answer	Additional Guidance	Mark
(iii)	An explanation linking:		(2)
	 time taken would be longer / the milk would not curdle (1) because the enzyme is denatured / the active site has changed shape (1) 	accept slow rate of reaction / a time greater than 75 seconds	AO2 1

Question Number	Answer	Additional Guidance	Mark
(iv)	Any one from:		(1)
	• it is a control (1)		AO2 2
	 to confirm that the milk doesn't curdle at that temperature without chymosin (1) 	accept to see the effect of not adding chymosin	
	 allows for a comparison with the results (1) 		

Question	Answer	Additional Guidance	Mark
Number			
(v)	Any two from:		(2)
	 use a smaller interval between the temperatures (1) 		AO3b
	 measure temperatures between the range of 35°C and 45°C (1) 	ignore a wider range of temperatures	
	 controlling a variable not identified in the method (1) 	accept e.g. volume of milk / type of milk / enzyme concentration	
	 keep the tubes at the required temperature after adding chymosin by using a water bath (1) 	accept use a water bath to control temperature	
	repeat the test at each temperature (1)	accept calculate a mean / identify anomalies	

Q15.

Question number	Answer	Mark
(i)	suitable scale (1) axes labelled (1) bars plotted correctly (1)	(3)

Question number	Answer	Mark
(ii)	A	(1)

Question number	Answer	Additional guidance	Mark
(iii)	An answer that combines the following points to provide a logical description of the method: • crush the seeds to release the sugar (1) • add Benedict's solution and heat (gently) (1) • brick-red colour (indicates presence of reducing sugar) (1)	Accept: other correct methods	(3)

Question number	Answer	Additional guidance	Mark
(iv)	wear safety goggles (to prevent chemicals getting into eyes)/heat mixture in a	Accept other suitable precautions	
	waterbath(1)	Ignore wear gloves	
+		Accept other correct safety precautions	(1)

Q16.

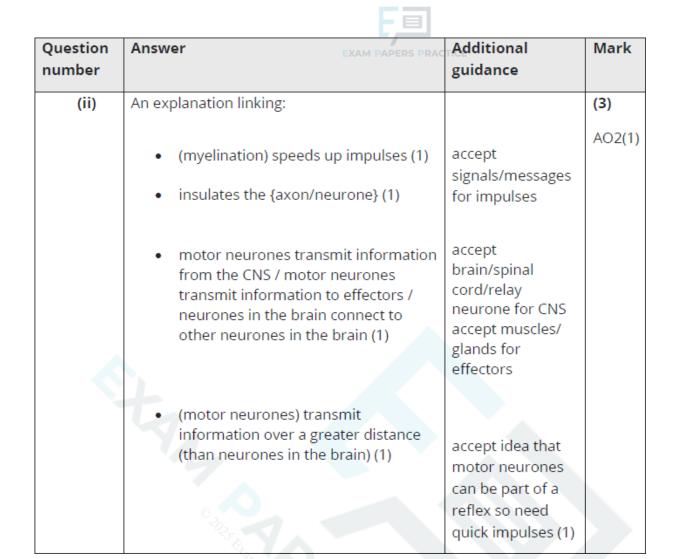
Question	Answer	Additional	Mark
Number	itacy.	guidance	
(i)	substitution		
	64.8 ÷ 1.8 x 1.8 (1)	full marks for	(2)
	Str.	correct answer	
	OR Too	without any	AO2 1
	Teg .	working	
	64.8 ÷ 3.24 (1)		
	20		

Question Number	Answer		Mark
(ii)	B healthy weight		(1)
	The only correct answer is B		AO2 1
	A is not correct because person B is not underweight		
	C is not correct because person B is not overweight		
	D is not correct because person B is not obese		

Question Number	Answer EXAM PA	Additional guidance	Mark
(iii)	 An explanation including: do more exercise /named exercise (1) so more energy is used up (1) 		(2) AO2 1
	OR		
	 reduce fat / carbohydrate intake (1) 	accept eat less	
	so energy intake is reduced (1)		

Q17.

	<u> </u>			
Question number	Answer	Additional guidance	Mark	
(i)	Measurement		(3)	
	65 (mm) / 6.5 cm (1)	accept 63 mm – 66 mm ecf from incorrect measurement	AO1(2)	
	Conversion			
	65 mm = 65 000 μm (1)	0.0013 x 1000 (1) ecf from incorrect		
	or	conversion		
	6.5 cm x 10 000 = 65 000 µm (1)			
	Division			
	65 000 ÷ 50 000 (1)	accept 6.5 ÷ 50 000 (1) 65 ÷ 50 000 (1)		
	1.3 (µm)	correct answer on answer line with no working 3 marks accept 1.26/1.28/1.32		
		(µm) for 3 marks		


Question number	Answer EXAM PAP	Additional guidance	Mark
(ii)	An answer including three of the following:	List rule applies: reject nucleus reject mitochondria	(3) exp
	 no nucleus /chromosomal DNA (1) cell wall (1) 	accept DNA is in the cytoplasm	AO1 (1)
	flagellum (1) presence of ribosomes (1)		
	no membrane bound organelles / no mitochondria (1)		
	7/1	accept:	
	7	pilli (1)	
		slime {coat / capsule / layer}(1)	
	Stann Pales Pro	ignore: cell membrane / cytoplasm / chloroplast	

Q18.

Question	Answer	Additional Guidance	Mark
	Allowel	Additional Suldance	Wark
Number			
		award full marks for the	(3)
		correct answer with no	
		workings	AO11
	measurement		
	45 (mm) / 4.5 cm (1)	allow 44-46 (mm)	
	calculation		
	(45 ÷ 700) = 0.0643 (1)	allow ecf for incorrect	
		measurement	
		- Tricasar criteria	
	conversion into standard		
	form and millimetres		
	Torri and minimicales		
	6.43 × 10 ⁻² / 6.4 × 10 ⁻²	allow ecf for incorrect	
	0.43 × 10 / 0.4 × 10	substitution	
		Substitution	
		accept answer to any	
		number of decimal	
		places	

Q19.

Question number	Answer	Additional Guidance	Mark
(i)	T _{Cy}	award full marks for	(2)
	2.0 x 10 ⁸ - 1.6 x 10 ⁷ / 200 000 000 - 16 000 000 /184 000 000 (1) 1.84 × 10 ⁸ / 1.8 x 10 ⁸	correct answer	AO2(1)
		accept 18.4 x 10 ⁷ or 18 x 10 ⁷ for 1 mark	

Q20.

Question number	Answer	Mark
(i)	C a cell wall	(1)
	1. The only correct answer is C	AO 1 1
	A is not correct because both plant and animal cells have cytoplasm	
	B is not correct because both plant and animal cells have a cell membrane	
	D is not correct because both plant and animal cells have mitochondria	

	3 I	

Question number	Answer	Additional guidance	Mark
(ii)	Substitution 20.5 x 400 (1)	award full marks for correct answer with no working	(2) AO 1 2
	Evaluation 8 200 (µm)		

Question number	Answer	Additional guidance	Mark
(iii)		award full marks for correct answer with	(2)
		no working	AO 2 2
	Substitution		
	$(3.08 \div 400) = 0.0077 (1)$	accept 0.008	
	Evaluation 7.7 x 10 ⁻³	accept 8.0 x 10 ⁻³	

Q21.

Question number	Answer	Additional guidance	Mark
	Substitution		(2)
	500 × 0.04 (1)		AO2 2
	Evaluation		
	20 (mm)	award two marks for correct answer with no working	

Q22.

Question	Answer Additional guidance			
number	Allswer	M PAPERS PRACTICE GUIDANCE	Mark	
(i)	5 (mm) (1)	accept 4 and 6 (mm)		
	5 000 000 nm(1)			
	5 000 000 ÷ 250 = 20 000			
	OR			
	5 (mm) (1)	accept 4 and 6 (mm)		
	0.00025 mm (1)			
	5 ÷ 0.00025 = 20 000			
		accept $5 \div 250 = 0.02$ (2) $4 \div 250 = 0.016$ (2) $6 \div 250 = 0.024$ (2)		
		accept numbers in standard form	(3)	
	5	award full marks for 20 000 without working		

Question number	Answer	Mark
(ii)	C axon	(1)

Q23.

- 8		
		3

Question number	Answer	Additional guidance	Mark
	5 (mm) (1)	accept 4 and 6 (mm)	
	5 000 000 nm(1)		
	5 000 000 ÷ 250 = 20 000		
	OR		
	5 (mm) (1)	accept 4 and 6 (mm)	
	0.00025 mm (1)		
	5 ÷ 0.00025 = 20 000		
		accept $5 \div 250 = 0.02$ (2) $4 \div 250 = 0.016$ (2) $6 \div 250 = 0.024$ (2)	
		accept numbers in standard form	
	4/1	award full marks for 20 000 without working	(3)

Q24.

S.S. number	Answer	Additional Guidance	Mark
	division 0.0062 ÷ 2 / 6.2 ÷ 2 (1)	award full marks for correct answer with no working	(2) AO2(1)
	OR		
	unit conversion		
	0.0031 x 1000 / 0.0062 x 1000 (1)		
	3.1 (picograms)	accept 6.2/ 0.0031 for 1 mark with no working	

Q25.

Question number	Answer	Additional Guidance	Mark
	division 0.0062 ÷ 2 / 6.2 ÷ 2 (1)	award full marks for correct answer with no working	(2) AO2(1)
<u> </u>	OR		
+	unit conversion		
	0.0031 x 1000 / 0.0062 x 1000 (1)		
	3.1 (picograms)	accept 6.2/ 0.0031 for 1 mark with no working	

Q26.

Question number	Answer	Mark
(i)	6 / six	(1) AO2.1

Question number	Answer EXAM PAPERS PRACTICE	Mark
(ii)	D cell wall, chloroplast, large vacuole. The only correct answer is D cell wall, chloroplast, large vacuole	(1) AO1.1
	A is incorrect because both the cell membrane and nucleus are also found in animal cells	
	B is incorrect because the cell membrane and cytoplasm are also found in animal cells	

C is incorrect because the nucleus is also found in animal

Q27.

Question number	Answer	Mark
(i)	6 / six	(1)
		AO1.2

Question number	Answer	Mark
(ii)	D cell wall, chloroplast, large vacuole.	(1)
	The only correct answer is D cell wall, chloroplast, large vacuole	AO1.1
	A is incorrect because both the cell membrane and nucleus are also found in animal cells	
	B is incorrect because the cell membrane and cytoplasm are also found in animal cells	
	C is incorrect because the nucleus is also found in animal cells	

Q28.

Question Number	Answer EXAM P.	Additional guidance	Mark
	• 5:15 (1) • 1:3	allow full marks for correct final answer with no working	(2) AO 2 1

Q29.

Question number	Answer	Mark
(i)	2:1	(1)

Question number	Answer	Mark
(ii)	0.05	(1)

Question number	Answer	Mark
(iii)	(as the size of the cube increases) the rate of diffusion remains the same / the size of the cubes does not affect diffusion rate	(1)

Question number	Answer	Mark
(iv)	An explanation that combines identification – amplification of knowledge (2 mark): • from an area where it is high concentration to an area of low concentration / down a concentration gradient (1) • because the jelly/agar/cube is permeable (1)	(2)

Q30.

Question Number	Answer	Additional guidance	Mark
(i)	(2 x 5.0 x 2.0) + (2 x 5.0 x 2.0) + (2 x 2.0 x 2.0) or 20 + 20 + 8 (1)	Allow full marks for correct final answer	(2)
	48.0	accept 48	AO 1 1

Question Number	Answer EXAM PAPERS PRA	Additional guidance	Mark
(ii)	 chip B has greater surface area (1) therefore more water {absorbed / moved into the potato chip} (1) 	accept chip B is bigger / has more cells	AO 3 2a AO 3 2b

Question Number	Answer	Additional guidance	Mark
(iii)	An explanation that links the following: • (cells) lose water / become plasmolysed (1)	accept get smaller/shrink/lose mass	(3) AO 1 1
	(water moves out) by osmosis (1) from a high concentration of water molecules (in the potato) to a low concentration of water molecules (in the solution) / through the partially permeable membrane (to the salt solution) (1)	accept from low solute concentration to a high solute concentration accept from high to low water potential	

Q31.

Question Number	Answer	Additional guidance	Mark
(i)		allow full marks for correct final answer	(2) AO 1 1
	48.0	accept 48	AUTT

Question	Answer	Additional	Mark
Number		guidance	
(ii)	chip B has greater surface area (1)	accept chip B is bigger / has more	(2)
		cells	AO 3 2a
	 therefore more water 		AO 3 2b
	{absorbed / moved into		
	the potato chip} (1)		

- •	-		
Question	Answer	Additional guidance	Mark
Number		MINI PAPERS PRACTICE	
(iii)	An explanation that links the following:		(3) AO 1 1
	(cells) lose water / become plasmolysed (1)	accept get smaller/shrink/lose mass	7.0 1 1
	followed by	mass	
	(water moves out) by osmosis (1)		
	from a high concentration of water molecules (in the potato) to a low concentration of water molecules (in the solution) / through the partially permeable membrane (to the salt solution) (1)	accept from low solute concentration to a high solute concentration accept from high to low water potential	

Q32.

Question number	Answer	Additional guidance	Mark
	• 42 (1) • X 85 % = 35.7 (g)	Award full marks for correct numerical answer without working	
	C. 1/1	Allow 36 for full marks	(2)

Q33.

Question number	Answer	Mark
(i)	Substitution 1.84 - 2.15 = -0.31 (1) change in mass	(3)
	Evaluation $-0.31 \div 2.15 = -0.144(1)$	
	Correct decimal places $-0.144 \times 100 = -14.41$ (%) (correct to 2 dec place)	

FB	

0	A	Addising I would	Manual.
Question number	Answer	Additional guidance	Mark
(ii)	An explanation that combines application of knowledge (1 marks) and reasoning/justification – application of understanding: (2 mark)		(3)
	chip 2 has gained mass but chip 5 has lost mass (1)		
	because chip 2 was immersed in a solution where the sucrose concentration outside the chip was lower than the sucrose concentration inside the chip (1)	Accept reverse argument for chip 5	
	so water osmosed into the chip causing it to become turgid / so chip water osmosed out of chip 5 and it became plasmolysed (1)		

Q34.

	Answer	Acceptable answers Mark	
(a)(i)	Any two of the following points: (yeast cell)		
	 has a nucleus (1) does not have a flagellum (1) does not have a plasmid (1) 	Accept: has a vacuole	
	(bacterial cell)		(2)
	circular DNA (1)	accept: named bacterial feature e.g pilli, small ribosome, if not labelled in yeast cell	
(a)(ii)	does not have chloroplasts/chlorophyll	cannot photosynthesise	(1)
(b)(i)		two marks for correct bald answer accept 43 000 000 000 allow one mark for correct subtraction from wrongly selected numbers	(2)

	L		
	EXAM PAR	only accept the numbers in the table	
		with a correct minus calculation	
(b)(ii)	A description including any two of the following points:		(2)
	involved in defence against disease / part of immune system (1)	accept: (fight pathogen / harmful microorganism / named microorganism)	
	• phagocytosis (1)	accept: engulf / ingest / surround /digest cells	
	 antibody / antitoxin production (1) 	-	
		reject: <u>make</u> antigens	
		ignore: refs to role of red blood cells or platelets	
(b)(iii)	tired / lack of energy / lethargy / short	anaemia /fainting / less oxygen /	(1)
	of breath	increased anaerobic respiration	
		1	
		reject: references to asthman	

Q35.

	Answer	Acceptable answers Mark	
(a)(i)	Any two of the following points: (yeast cell)		
	 has a nucleus (1) does not have a flagellum (1) does not have a plasmid (1) 	Accept: has a vacuole	
	(bacterial cell)	'Cx	(2)
	circular DNA (1) • has a capsule (1) • has a slime coat (1) • does not have mitochondria (1)	accept: named bacterial feature e.g pilli, small ribosome, if not labelled in yeast cell	
(a)(ii)	does not have chloroplasts/chlorophyll		(1)
(b)(i)	=(-)4.3 \times 10 ¹⁰ or (-)43 \times 10 ⁹	two marks for correct bald answer accept 43 000 000 000 allow one mark for correct subtraction from wrongly selected numbers only accept the numbers in the table with a correct minus calculation	(2)

(b)(ii	A description including any two of the following points:	ERS PRACTICE	(2)
	involved in defence against disease / part of immune system (1)	accept: (fight pathogen / harmful microorganism / named microorganism)	
	• phagocytosis (1)	accept: engulf / ingest / surround /digest cells	
	 antibody / antitoxin production (1) 		
		reject: <u>make</u> antigens	
		ignore: refs to role of red blood cells or platelets	
(b)(ii	i) tired / lack of energy / lethargy / short	anaemia /fainting / less oxygen /	(1)
` ` ` `	of breath	increased anaerobic respiration	
		reject: references to asthman	

Q36.

Question Number	Answer	*10 p	Acceptable answers	Mark
(a)(i)	nucleus (1)	Piacijo.		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	C In DNA, the bases A - T are complementary	Reserve	(1)

Question Number	Answer	Acceptable answers	Mark
(b)	A definition including two of the following:	Ignore sperm meets egg	
	being diploid / has 23 pairs of chromosomes / zygote formed (1)		(2)

Question Number	Answer	Acceptable answers	Mark
(c)(i)	A description that includes the following: • (aerobic) respiration / using glucose / using oxygen (1) • energy released (for movement / swimming / metabolism)(1)		(2)

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	An explanation including two of the following: • a change in a base/base sequence/order of bases / a change in mRNA (1) • named change e.g. addition/deletion (1) • reference to change in an amino acid / order of amino acids (1)	Accept codon, triplet, genetic code for base. substitution/deletion/other named gene mutation.	
	2		(2)

Q37.

Question Number	Answer	Acceptable answers	Mark
(a)(i)	nucleus (1)		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	C In DNA, the bases A - T are complementary		(1)

Question Number	Answer	Acceptable answers	Mark
(b)	A definition including two of the following: • a sperm fuses with egg / penetrates the egg (1) • nuclei/genetic information fuses /combines (1) • reference to haploid gametes /gametes have 23 chromosomes (1) • reference to cell made being diploid / has 23 pairs of chromosomes / zygote formed (1)	Ignore sperm meets egg	(2)

Question Number	Answer	Acceptable answers	Mark
(c)(i)	A description that includes the following: • (aerobic) respiration / using glucose / using oxygen (1) • energy released (for movement / swimming / metabolism)(1)	A Rights Reserved	(2)

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	An explanation including two of the following:		
	a change in a base/base sequence/order of bases / a change in mRNA (1)	Accept codon, triplet, genetic code for base.	
	named change e.g. addition/deletion (1)	substitution/deletion/other named gene mutation.	
	 reference to change in an amino acid / order of amino acids (1) 		
	(-)		(2)

Q38.

Question number	Answer	Additional guidance	Mark
(i)	Any one from:	ignore to prevent drying out	(1)
	keep leaf peel flat (1)		AO 2 2
	keep leaf peel in place (1)		
	protect the (objective) lens (1)		
	protect the specimen (1)		

Question number	Answer	Additional guidance	Mark
(ii)	An explanation linking two of the following:		(2)
4	the leaf peel is thin / leaf is too thick (1)		AO 2 2
	as the leaf peel allows light to pass through it/the leaf would not allow light to shine through it (1)	accept leaf would be opaque	
	 to enable the {stomata / cells/ guard cells} to be identified (1) 	accept to see stomata / cells	

Q39.

Question Number	Answer	Additional guidance	Mark
	all points plotted correctly to		(2)
	+/- ½ small square (1)	(C)	AO 2 2
	a line showing a steady increase that levels off at 30au/40g (1)	accept dot-to-dot line	

Question number	Answer EXAM PAPERS PRACTICE	Mark
	smaller (1) diffusion (1)	(2)
	must be in correct order accept any reasonable spellings.	AO 1 1 AO 2 1

Q41.

Question number	Answer	Mark
to	B denatured 5b The only correct answer is B	(1) AO1 (1)
	A is not correct because the enzyme is not specific when it changes shape	
	C is not correct because the enzyme is not digested when it changes shape	
	D is not correct because the enzyme is not dead when it changes shape	

Q42.

Question number	Answer	Mark
	С	(1)

Q43.

Question number	Answer	Additional Guidance	Mark
(i)	pressure (1) thick (1)	must be in correct order	(2)

Question number	Answer	Additional Guidance	Mark
(ii)	26 ÷ 20 (1)	two marks for correct answer	(2)
	1.3 (mm)		

Question number	Answer	Mark
(iii)	B the aorta transports oxygenated blood away from the heart	(1)

Q44.

Answer	Acceptable answers	Mark
to supply / contain (a large amount of)	food /named nutrient	
nutrients / energy (for the zygote /		
embryo)	Ignore references to foetus	(1)
\$c _y .	Reject baby	
C. A. C.		

Q45.

Answer	Acceptable answers	Mark
to supply / contain (a large amount of) nutrients / energy (for the zygote / embryo)	•	(1)
	-	

Question	Answer	Additional guidance	Mark
Number			
(i)	water (1)	answers must be in the correct order	(2)
	lid (1)	the correct order	AO2 2

Question Number	Answer	Additional guidance	Mark
(ii)	interpretation	full marks for correct	(2)
	(85 – 21) = 64 (1) calculation (25 x 4.2 x 64)	answer without any working	AO2 1
4	6720 (J)		
		award one mark for an answer correctly calculated from an incorrect temperature change	

Question	Answer	Additional	Mark
Question Number (iii)	An explanation including two from: • the {temperature change / rise in temperature} was smaller (1) • this type of cheese contained less {energy / fat} / the piece of cheese had a smaller mass / a smaller mass of the cheese burned / the cheese was held further away from the container (1)	Additional guidance accept other valid variables	Mark (2) AO3 2a 2b
	therefore less energy was transferred to the water (1)		

Question number	Answer	additional guidance	Mark
	mix the food in ethanol and pour into water (1)	accept add water and ethanol and mix	(2) AO1 2
	white emulsion forms (1)	accept white precipitate / goes cloudy /emulsion test accept rub pea / food on filter paper (1) and look for a translucent mark (1)	

Q48.

£		mark (1)	
Question number	Answer	additional guidance	Mark
	An answer linking:		(2)
	mix the food in ethanol and pour into water (1)	accept add water and ethanol and mix	AO1 2
	white emulsion forms (1)	accept white precipitate / goes cloudy / emulsion test	
		accept rub pea / food on filter paper (1) and look for a translucent mark (1)	

Q49.

一日		
- 8		

Question number	Answer	Additional guidance	Mark
	A description including:		(2)
	 add Biuret {reagent / solution} / do the biuret test (1) 	accept sodium hydroxide and copper sulfate	AO1 2
	 colour change (from blue) to purple protein is present (1) 	accept mauve/violet for purple	
		accept the use of an albustix (1)	
		colour change for albustix (1)	

Q50.

Question Number	Answer	Additional Guidance	Mark
	*th /2		(2)
	Structure A		
	 the mitochondria 	reject produces / creates	AO11
	{release energy / for respiration} (1)	energy	
	Structure B		
	{acrosome / contains		
	enzymes} to digest the		
	egg cell membrane (1)		

Q51.

Question number	Answer	Additional Guidance	Mark
	measure the start and end temperature (of the water) (1)	accept use the thermometer to measure the (water) temperature	(3) AO1 (2)
	burn the food (in the chamber) (1)	ignore heat the food	
	use the increase in the temperature of water to calculate the energy content (1)	accept use temperature change to calculate the energy content ignore the temperature rise is the energy content	

Q52.

Question Number	Answer	Additional Guidance	Mark
	An answer including:		(2)
	use the x40 objective lens (1)	accept other combinations of x 400 lenses	AO1 1
	and one from:	for two marks	
	use the x10 eye piece lens (1)		
	use the focusing wheel (1)	accept move the {stage / lens}	

Question	Answer EXAM PA	Additional	Mark
Number		guidance	
(i)	Any one from:		(1)

Question	/ \(13 \(V \) (1	EXAM PAPERIGIRIZE	ME IVIGITY
Number		guidance	2
(i)	Any one from:		(1)
	 a single result could be anomalous (1) 	accept to results a same / si	
	• to calculate a mean (1)		
		ignore re to increa accuracy	_

Question Number	Answer	Additional guidance	Mark
(ii)	Any two from:		(2)
4	measure the length / width of the carrot sticks (1)		AO3 3b
	cut sticks from the same carrot / same part of carrot (1)		
	use the same variety of carrot (1)		
	(surface) dry the carrot sticks before weighing (1)	accept other valid ways of improving this method, e.g. using more than three carrot sticks (1)	

Question	Answer		Additional	Mark
Number	Allswei	EXAM PA	guidance	IVIAIK
(iii)	substitution (0.8 ÷ 4.2) x 100 (1)		full marks for correct answer	(3)
			without any working	AO2 1
	evaluation 19.048 (1)		accept 19.0476 / 19.05 (2)	
	2 significant figures		award one mark for rounding an	
	19 (%)		incorrectly calculated answer to 2 significant figures	

Question Number	Answer	Mark
(iv)	An explanation linking any two from:	(2)
	the carrot sticks gained mass (1)	AO3 2a 2b
	because water moved into the carrot (cells) (1)	
	by osmosis / description of osmosis (1)	

Q54.

Question Number	Answer	Additional guidance	Mark
	A description including the following:		(3)
	add Benedict's solution (to some dialysis fluid) (1)		AO2 2
	• {heat / boil / put in water bath} (1)		
	 see if it turns {green / yellow / orange / red} (1) 	accept brown	

Q55.

Question	Answer	Additional	Mark
Number		guidance	
	A description including:		(3)
	add Benedict's solution (to some dialysis fluid) (1)		AO2 2
	• {heat / boil / put in water bath} (1)		
_	see if it turns {green / yellow / orange / red} (1)	accept brown	

Q56.

Question	Answer	Mark
Number	777,5	
	An answer including:	(2)

	(add) iodine (solution) (1)	AO1 2
	(iodine solution changes from brown to) blue-	
	black / black (1)	

Q57.

Question Number	Answer EXAM F	Additional guidance	Mark
	mass of product formed increases as enzyme concentration increases (1) then (the mass of product formed) remains the same (1) 30 au/40 g is point where mass of product remains the same (1)	accept then levels off (1)	AO 3 1a AO 3 1b

Q58.

Question number	Answer	Additional guidance	Mark
(i)	(meristem cells) are undifferentiated (1) (meristem cells) divide / produce more cells (1)	accept are stem cells	(2) AO1 1
	• by mitosis (1)	accept (the cells produced) can differentiate /become specialised/elongate (1)	

Question number	Answer	Additional guidance	Mark
(ii)	use a thin section of (colls/marietem) (1)	accept add a sample of the cells to the	(3) AO1 2
	{cells/meristem} (1) • add a stain / named stain (1)	microscope slide	
	 place a cover slip on top of the sample (1) 	accept a description of a coverslip	

Question number	Answer	Additional guidance	Mark
(i)	Two from:		(2) AO1 1
	 (meristem cells) are undifferentiated 	accept are stem cells	
	 (meristem cells) divide / produce more cells (1) 		
	• by mitosis (1)	accept (the cells produced) can differentiate /become specialised/elongate (1)	

Question number	Answer	Additional guidance	Mark
(ii)	• use a thin section of {cells/meristem} (1) • add a stain / named stain (1)	accept add a sample of the cells to the microscope slide	(3) AO1 2
	 place a cover slip on top of the sample (1) 	accept a description of a coverslip	

Q60.

Question number	Answer	Additional guidance	Mark
	A description including:	accept sodium hydroxide and copper sulfate	(2) AO1.1
	colour change (from blue) to mauve / purple (1)		

