Question number	Answer	PAPERS PRACTICE Notes	Marks
1 a	A (addition)		1
b	A (a molecule used to make a polymer)		1
c i ii	propene	M1 chain of two carbons joined by single bond AND both continuation bonds M2 one CH_{3} group in any position AND three H atoms Do not penalise bond to H of CH_{3} Reject any structure with double bond Allow multiple repeat units if correct Three or more CH_{2} groups linked together scores 0/2 Ignore brackets and subscripted n	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
d		Accept Cl in any position Ignore bond angles Ignore brackets / n	1

EXAM PAPERS PRACTICE

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \(1 \mathrm{erc}^{\text {i }}\) \& \begin{tabular}{l}
M1 (polymer) breaks down / decomposes / decays \\
M2 by bacteria / microbes / microorganisms / decomposers /enzymes \\
inert(ness) / unreactive / OWTTE
\end{tabular} \& \begin{tabular}{l}
Do not penalise compound / object / molecule / substance in place of polymer Reject element in place of polymer I gnore rots / degrades / digests / disintegrates If reference to not breaking down etc, only M2 can be awarded \\
Accept biologically / naturally \\
M2 DEP on M1 or near miss \\
I gnore do not react with named chemical Ignore references to bond strengths / bond breaking
\end{tabular} \& 2

1 \\
\hline \& \& \multicolumn{2}{|l|}{Total 9 marks} \\
\hline
\end{tabular}

EXAM PAPERS PRACTICE

Question number	Answer	Notes	Marks
2 (a) (i) (ii) (iii)	 M1 - a long chain (molecule) M2 - formed when (many) small molecules/monomers join (together) poly(tetrafluoroethene)/poly(tetrafluoroethylene)	ignore bond angles Ignore brackets and n Do not penalise FI accept large molecule / macromolecule Accept react/bond/add/link for join accept names without brackets Ignore minor spelling errors I gnore PTFE accept Teflon	1 1 1 1
(b)	M1 (name) - ethene M2 (formula) - $\mathrm{C}_{2} \mathrm{H}_{4}$	accept ethylene reject structural or displayed formula Penalise inappropriate use of upper and lower case letters or numbers No penalty for correct answers on wrong lines	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

EXAM PAPERS PRACTICE
$\left.\begin{array}{|c|l|l|c|}\hline \text { (c) } & \mathbf{M 1 ~ - ~ (t h e y) ~ d o ~ n o t ~ b i o d e g r a d e ~} & \begin{array}{l}\text { accept not broken down by bacteria / } \\ \text { microbes / decomposers / microorganisms / } \\ \text { enzymes }\end{array} & 1 \\ \mathbf{M 2 ~ - ~ (b e c a u s e) ~ t h e y ~ a r e ~ i n e r t ~ / ~ d o ~ n o t ~ r e a c t ~ / ~} \\ \text { are unreactive }\end{array} \quad \begin{array}{l}\text { ignore do not react with any named chemical } \\ \text { ignore references to bond strengths / bond } \\ \text { breaking } \\ \text { Mark independently }\end{array}\right\}$

EXAM PAPERS PRACTICE

Question number	Answer	Accept	Reject	Marks
3 (a)	M1 - M2 - any suitable use, eg: - plastic bags - buckets/bowls - storage bottles (for food, drinks, chemicals) - garden furniture - gas pipes - rubbish bins - storage tanks for fuel - cling film - packaging - clothing - insulation (for electric cables) Please research any unfamiliar use M3 - poly(propene) M4 - IGNORE bond angles	continuation bonds not going through brackets polypropene polypropylene methyl group attached to any carbon methyl group displayed	just plastic	1 1 1 1

EXAM PAPERS PRACTICE

(b)	Any two from M1 - (many) small molecules/monomers join up M2 - double bond becomes single bond/ it becomes saturated M3 - increase in mass/chain length/size	OWTTE double bond breaks and single bond forms	2
(c) (i) (ii)	inert(ness) IGNORE strong bonds / long chains M1 - produces greenhouse gases/toxic gases/poisonous gases M2 - (landfill) uses up land / takes up space OR new sites hard to find	unreactive/ non- polar carbon dioxide	1 1

(Total marks for Question $3=9$ marks)

XAM PAPERS PRACTICE

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 4 (a) \& (the molecule) contains a (carbon to carbon) double bond \& accept 'multiple bond' ignore refs to single bonds \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{C}_{8} \mathrm{H}_{18}\) and \(\mathrm{C}_{2} \mathrm{H}_{4}\) \\
M1 600-700으․ \\
M2 silica / alumina (catalyst)
\end{tabular} \& \begin{tabular}{l}
I gnore names of compounds \\
accept ‘aluminium oxide / silicon dioxide / aluminosilicate / zeolite' accept correct formulae
\end{tabular} \& \begin{tabular}{l}
1 \\
2
\end{tabular} \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 (they have) the same molecular formula \\
M2 (but have) different structural formulae / displayed formulae / structures
\end{tabular} \& \begin{tabular}{l}
allow 'both have same number of carbon and hydrogen (atoms as each other)' \\
accept 'the atoms are arranged differently' \\
accept \\
ignore bond angles \\
accept fully displayed formula
\end{tabular} \& 2

1 \\
\hline
\end{tabular}

4 (d) (i) (ii)	poly(propene) / polypropene M1 correct structure M2 extension bonds	accept 'polypropylene' ignore brackets and ' n ' M2 dep on M1 except award M2 if >1 repeat unit given	1 2
(e)		penalise incorrect use of upper / lower case letters and subscripts penalise bonds to incorrect atoms	1

Question number	Answer	Notes	Marks
5 a	```reference to line/curve/temperature /graph/it AND not reached minimum / not constant / not level /not horizontal /still falling /decreasing/changing```	I gnore reference to correlation Ignore has not reached zero / x-axis I gnore does not become	1
b	(better) insulator (than glass) OR poor conductor (of heat)	Accept equivalents such as prevents heat from entering / keeps out heat better Allow stops heat escaping / traps heat Reject references to keeping temperature constant Ignore references to breaking glass	1
c i ii	effervescence / fizzing / bubbles OR colourless solution/liquid formed Neutralisation endothermic	Accept carbon dioxide gas Accept gas given off/evolved/formed I gnore identity of gas Accept solid disappears/dissolves I gnore hissing and other sounds Accept acid-base / acid-alkali M1 and M2 independent Accept answers in either order Do not penalise contradictions such as exothermic and endothermic - this answer is worth 1 mark	1 1 1

EXAM PAPERS PRACTICE

Question number	Answer	Notes	Marks	
5	d	i	product formulae or names / products (word) above reactants	Horizontal line not needed Ignore formula errors and one or two missing product(s) Ignore curves and intermediates
ii	(approximately) vertical line between reactants and products / between two levels AND labelled $\Delta H /$ energy change / heat change / enthalpy change	Ignore arrowheads on vertical line Ignore sign of ΔH Mark can be awarded for exothermic reaction Accept 2310 or any other number in place of ΔH	1	

For more help please visit our website www.exampaperspractice.co.uk

Question number	Answer	Notes	Marks
5 (e) i	temperature change $=(-) 5.5$ $\left({ }^{\circ} \mathrm{C}\right)$ heat change $(=100 \times 4.2 \times$ $5.5)=2310 / 2300(\mathrm{~J})$	Award M1 for 5.5 anywhere CQ on candidate temperature change, provided other values correct Accept answer in kJ Ignore signs Correct final answer scores 2 $2.31(\mathrm{~J})$ scores 1 mark if M1 not awarded Ignore strength Ignore reference to Mr Accept concentration even if in an incorrect expression	1
ii	concentration (of vinegar / (ethanoic) acid / CH3 COOH$)$	1	

E氞

Question number	Expected Answer	Accept	Reject	Marks
6 (a) (i)	M1 contains carbon and hydrogen (atoms / elements / particles)	C and H for carbon and hydrogen	ions / carbon molecules / hydrogen molecules / H_{2} / mixture of C and H	1
	M2 only	other equivalent words, eg solely / entirely / completely		1
	M2 DEP on M1, but allow M2 if molecules / ions / mixture used in M1			
	$\mathrm{C}_{10} \mathrm{H}_{22}$ IGNORE structural formula	$\mathrm{H}_{22} \mathrm{C}_{10}$	Reject superscripts / lower case c or h / full size numbers	1
(b) (i)	addition	additional		1
(ii)	M1 one of the bonds in the double bond breaks	double bond breaks / double bond becomes single bond changes (from unsaturated) to saturated		1
	M2 (many) ethene(s)/molecules/monomers join (together)			1
	OR (many) ethene(s)/molecules/monomers form a chain			

EXAM PAPERS PRACTICE

Question number	Expected Answer	Accept	Reject	Marks
6 (c)	Any 4 from: - produces smaller / shorter (chain) molecules - smaller / shorter (chain) molecules more useful (as fuels) / have greater demand - smaller / shorter (chain) molecules burn more cleanly / are used to make petrol/diesel/fuel for vehicles - crude oil richer in / has a surplus of long (chain) molecules - produces alkenes / any named alkene - alkenes used to make alcohol / polymers / plastics / chemical feedstock / any named addition polymer	ORA low(er) demand products converted to high(er) demand products ORA		4

Question number	Answer EXAM	ers practice Notes	Marks
7 a	hydrogen / H_{2}	Ignore H	1
b	only single bonds (between carbon atoms) /single bond(s) between carbon atoms	ignore between C and H Accept no double bond(s) / no multiple bond(s) Ignore answers that refer to numbers of hydrogens	1
c i ii	 C (the product of the reaction is colourless)	Accept Br atoms in any position provided one on each carbon	1 1
d		M1 for $4 \times \mathrm{C}$ AND $6 \times \mathrm{H}$ and $2 \times \mathrm{CH}_{3}$ M2 for extension bonds and two CH_{3} groups on alternate carbon atoms (can be both above or both below carbon chain) M2 DEP on M1 Do not penalise bonds to H of CH_{3} Ignore brackets and subscripted n If any double bond shown, then $0 / 2$	2
e		Reject any extension bonds I gnore bond angles Do not penalise more than one correct structure	1

| Question
 number | Answer | | Marks |
| :---: | :--- | :--- | :---: | :---: |
| 7 f i | (polymer) breaks down / decomposes /
 decays | Do not penalise compound / object /
 molecule / substance in place of polymer
 Reject element in place of polymer
 Ignore rots / degrades / digests /
 disintegrate
 If reference to not breaking down etc, only
 M2 can be awarded
 Ignore naturally / enzymes | 1 |
| ii | inert / unreactive / OWTTE | Ignore do not react with named chemical
 lgnore references to bond strengths / bond
 breaking | 1 |

For more help please visit our website www.exampaperspractice.co.uk

