

GCSE OCR Math J560 Surds

Question Paper

"We will help you to achieve A Star"

Work out the value of $(\sqrt{12} - \sqrt{3})^2$

[2 marks]

Question 2

ABD is a right angled triangle.

Diagram **NOT** accurately drawn

All measurements are given in centimetres.

C is the point on BD such that $CD = \frac{\sqrt{3}}{3}$

$$AD = BD = \frac{\sqrt{2}}{2}$$

Work out the exact area, in cm², of the shaded region.

(a) Rationalise the denominator of $\frac{12}{\sqrt{3}}$

[2 marks]

Question 4

Show that
$$\frac{(4-\sqrt{3})(4+\sqrt{3})}{\sqrt{13}}$$
 simplifies to $\sqrt{13}$

[2 marks]

Question 5

Rationalise the denominator of $\frac{10}{\sqrt{5}}$

Give your answer in its simplest form.

[2 marks]

Question 6

 $\sqrt{5}(\sqrt{8} + \sqrt{18})$ can be written in the form $a\sqrt{10}$ where a is an integer.

Find the value of a.

(a) Rationalise the denominator of $\frac{5}{\sqrt{2}}$

[2 marks]

Question 8

(b) Expand and simplify $(2 + \sqrt{3})^2 - (2 - \sqrt{3})^2$

[2 marks]

Question 9

$$a = \sqrt{8} + 2$$

$$b = \sqrt{8} - 2$$

$$T = a^2 - b^2$$

Work out the value of T.

Give your answer in the form $c\sqrt{2}$ where c is an integer.

[4 marks]

Show that $\frac{6-\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b\sqrt{2}$ where a and b are integers.

[3 marks]

Question 11

Simplify fully
$$\frac{(6-\sqrt{5})(6+\sqrt{5})}{\sqrt{31}}$$

You must show your working.

Martin did this question.

Rationalise the denominator of
$$\frac{14}{2 + \sqrt{3}}$$

Here is how he answered the question.

$$\frac{14}{2+\sqrt{3}} = \frac{14\times(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$$
$$= \frac{28-14\sqrt{3}}{4+2\sqrt{3}-2\sqrt{3}+3}$$
$$= \frac{28-14\sqrt{3}}{7}$$
$$= 4-2\sqrt{3}$$

Martin's answer is wrong.

(a) Find Martin's mistake.

[1 mark]

Sian did this question.

Rationalise the denominator of $\frac{5}{\sqrt{12}}$

Here is how she answered the question.

$$\frac{5}{\sqrt{12}} = \frac{5\sqrt{12}}{\sqrt{12} \times \sqrt{12}}$$
$$= \frac{5 \times 3\sqrt{2}}{12}$$
$$= \frac{5\sqrt{2}}{4}$$

Sian's answer is wrong.

(b) Find Sian's mistake.

[1 mark]

Show that
$$\frac{1}{1 + \frac{1}{\sqrt{2}}}$$
 can be written as $2 - \sqrt{2}$