

Static Electricity

These practice questions can be used by students and teachers and is

Suitable for GCSE AQA Physics Topic Question 8463

Level: GSCE AQA 8463 Subject: Physics

Exam Board: GCSE AQA

Topic: Static Electricity

Q1.

Figure 1 shows a student walking on a carpet.

Figure 1

(a) The student becomes negatively charged because of the friction between her socks and the carpet.

Explain why the friction causes the student to become charged.

(b) The student's head is represented by the sphere in **Figure 2**.

The student is negatively charged. The arrow shows part of the electric field around the student's head.

Draw three more arrows on Figure 2 to complete the electric field pattern.

Figure 2

 (c) The negatively charged student touches a metal tap and receives an electric shock. Explain why.

(3)

(1)

(d) Some carpets have thin copper wires running through them. The student is less likely to receive an electric shock after walking on this type of carpet.

Suggest why.

(2) (Total 8 marks)

Q2.

A student investigated how the resistance of a piece of nichrome wire varies with length.

Figure 1 shows part of the circuit the student used.

(a) Complete **Figure 1** by adding an ammeter and a voltmeter.

Use the correct circuit symbols.

(b) Describe how the student would obtain the data needed for the investigation.

Your answer should include a risk assessment for **one** hazard in the investigation.

(c) Why would switching off the circuit between readings have improved the accuracy of the student's investigation?

Tick **one** box.

The charge flow through the wire would not change.

The potential difference of the battery would not increase.

The power output of the battery would not increase.

The temperature of the wire would not change.

(1)

(d) The student used crocodile clips to make connections to the wire.

They could have used a piece of equipment called a 'jockey'.

Figure 2 shows a crocodile clip and a jockey in contact with a wire.

	8		
510 520 530 540 55	60 570 580 590 e	10 520 530 540 5	60 570 580 590 60

Figure 2

Crocodile clip

Jockey

How would using the jockey have affected the accuracy and resolution of the student's results compared to using the crocodile clip?

Tick two boxes.

The accuracy of the student's results would be higher.

8		
		4

Q3.

A student used some everyday items to investigate static electricity.

Figure 1 shows a flexible plastic strip being rubbed with a cloth.

Figure 1

(a) Complete the sentence.

Choose the answer from the box.

Rubbing the plastic strip with the cloth causes the strip to become

negatively charged because _____ move from the cloth

onto the plastic strip.

(b) Complete the sentence.

Choose the answer from the box.

For more help, please visit exampaperspractice.co.uk

(1)

a negative	a positive	zero

The cloth is left with _____ charge.

(1)

(c) The student hung the plastic strip over a wooden rod.

The ends of the strip moved away from each other.

Figure 2 shows the position of the plastic strip on the wooden rod.

Figure 2

What **two** conclusions should the student make about the forces acting on the two halves of the plastic strip?

1	 	 	
2	 	 	

(2)

(d) Another student repeated the experiment using the same method and found the plastic strip moved in the same way.

Complete the sentence.

Choose the answer from the box.

an anomaly repeatable reproducible

The investigation was _____

(1) (Total 5 marks)

Q4.

Sources of background radiation are either natural or man-made.

(a) Which **two** of the sources listed in the table are natural sources of background radiation?

Tick **two** boxes.

Cosmic rays	
Medical X-rays	
Nuclear power stations	
Nuclear weapons testing	
Radon gas	

(2)

A teacher used a Geiger-Müller (GM) tube and counter to measure the background radiation in his laboratory.

Figure 1 shows the GM tube and counter.

(b) The table gives three readings taken by the teacher at three different times on the same day.

16	
21	
18	

What is the most likely reason for the readings being different? Tick **one** box.

Radioactive decay is a random process.

The air pressure in the laboratory increased.

The background radiation increased during the day.

The temperature in the laboratory decreased.

(1)

(c) The teacher takes a radioactive source from a storage box.

Figure 2 shows the box.

Figure 2

Why does storing the radioactive source in the box reduce the risk of radiation exposure to the teacher?

Tick **one** box.

The lead lining absorbs the emitted radiation.

The lead lining reflects the emitted radiation.

The lead lining transmits the emitted radiation.

(d) **Figure 3** shows how the teacher used the GM tube and counter to measure the radiation emitted from the radioactive source.

The counter was reset to zero.

The count after one minute was 159.

How should the teacher calculate the counts from the radioactive source?

Tick **one** box.

Add the background count to 159Divide the background count by 159Multiply the background count by 159Subtract the background count from 159

(e) The teacher passed the radiation through an electric field.

Figure 4 shows the path that the radiation took through the electric field.

Figure 4

For more help, please visit exampaperspractice.co.uk

(1)

		<u> </u>	/	
	→			
Radioactive source		-		
		Electric field		
What type of radiation wa	s being emitted b	y the radioactive	e source?	
Tick one box.				
Alpha	Beta	Gamma		Neutron
Explain the reason for yo	ur answer.			

Q5.

A student rubs an acetate rod with a cloth.

Figure 1 shows the charges on the acetate rod and cloth before and after rubbing.

Figure 1

(a) Explain how rubbing an acetate rod with a cloth causes the rod and cloth to become charged.

(b) After charging them, the student moves the acetate rod and the cloth closer together.Which statement is correct?

Tick one box.

There is no force between the acetate rod and the cloth.

There is a force of attraction between the acetate rod and the cloth.

There is a force of repulsion between the acetate rod and the cloth.

Give a reason fo	r your answer.
------------------	----------------

For more help, ple	ase visit exampap	erspractice.co.uk
--------------------	-------------------	-------------------

(c) **Figure 2** shows a Van de Graaff generator, which is used to generate static electricity.

Figure 2

© Michael Priest

(1)

The longer the Van de Graaff generator is switched on, the more charge is stored on the metal dome.

Use an answer from the box to complete the sentence.

decrease	increase	stay the same

The amount of charge on the metal dome is increased, which causes the potential

difference between the metal dome and the earthed sphere to ______.

(d) When the potential difference between the Van de Graaff generator and the earthed sphere is 60 kV, a spark jumps between the metal dome and the earthed sphere.

The spark transfers 0.000025 coulombs of charge to the earthed sphere.

The equation which links charge, energy and potential difference is:

energy transferred = charge × potential difference

Calculate the energy transferred by the spark.

For more help, please visit exampaperspractice.co.uk

Energy transferred = _____ J (2) (Total 9 marks)

Q6.

Figure 1 shows a Van de Graaff generator that is used to investigate static electricity.

Before it is switched on, the metal dome has no net charge.

After it is switched on, the metal dome becomes positively charged.

Figure 1

(a) Explain how an uncharged object may become positively charged.

Use arrows to show the direction of the electric field.

Positively charged metal dome

(c) Another positively charged object is placed in the electric field.

Look at Figure 3.

Ŗ

In which position would the object experience the greatest force?

Tick **one** box.

For more help, please visit exampaperspractice.co.uk

(Total 6 marks)

Q7.

The figure below shows a slide in a children's playground.

(a) A child of mass 18 kilograms goes down the slide.

The vertical distance from the top to the bottom of the slide is 2.5 metres.

Calculate the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.

Gravitational field strength = 10 N / kg

Decrease in gravitational potential energy = _ J

(2)

- (b) The slide is made of plastic.
 - (i) The child becomes electrically charged when he goes down the slide.

Explain why.

(ii) Going down the slide causes the child's hair to stand on end.

What conclusion about the electrical charge on the child's hair can be made from this observation?

For more help, please visit exampaperspractice.co.uk

	Give a reason for your answer.
(iii)	Why would the child not become electrically charged if the slide was made fror metal?

Q8.

(a) A student uses some everyday items to investigate static electricity.

1 A strip of plastic is cut from a plastic carrier bag 2 The plastic strip is rubbed with a cloth

3 The plastic strip is hung over a wooden rod

(i) Draw a ring around the correct answer in the box to complete each sentence.

Rubbing the plastic strip with a cloth causes the strip to become negatively charged.

The cloth is left with	a positive	charge.
	zero	

(ii) When the plastic strip is hung over the wooden rod, the two halves of the strip move equally away from each other.

What **two** conclusions should the student make about the forces acting on the two halves of the plastic strip?

- (b) Electrical charges move more easily through some materials than through other materials.

Through which **one** of the following materials would an electrical charge move most easily?

Draw a ring around your answer.

	rubber	glass	aluminium
(1)			
(Total 5 marks)			

Q9.

(a) The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod.

Which **one** of the following statements explains what is happening to the charge in the water?

For more help, please visit exampaperspractice.co.uk

(2)

Tick (✓) one box.

The positive and the negative charges in the water are attracted to the rod.

The positive and the negative charges in the water are repelled by the rod.

The negative charge in the water is repelled by the rod and the positive charge is attracted to the rod.

The negative charge in the water is attracted to the rod and the positive charge is repelled by the rod.

- (1)
- (b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

As the bottles go towards the filler, the bottles move around on the conveyor belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.

The company came up with an answer to the problem. Before the bottles reach the dfiller, the bottles pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.

(i) Explain why the plastic bottles became charged.

- (ii) What happens to the structure of an atom to change the atom into an ion?
- (iii) Earthing the conveyor belt with a conducting wire would not have solved this problem.
 Give a reason why.

(1) (Total 5 marks)

(2)

(1)

Q10.

(a) Fine powders poured through a pipe can become charged. The diagram shows the apparatus used by a student to investigate this effect.

The student poured 75 cm³ of polystyrene beads down the pipe. The beads fell into a metal can and the charge on them was measured directly using a coulombmeter.

The student repeated this twice more, but each time used 75 cm³ of beads of a different size.

(i) When they fell through the pipe, the polystyrene beads became negatively

Give one	control varia	able in the s	tudent's ir	vestigation.	

(b) The results obtained by the student are shown in the table.

Diameter of polystyrene beads in mm	Charge in microcoulombs
1.0	0.080
2.0	0.044
3.0	0.012

(1 000 000 microcoulombs = 1 coulomb)

- (i) Describe the connection between the size of the polystyrene beads and the total charge on the beads.
- (ii) Explain how these results might be different if the student had used a shorter pipe.

For more help, please visit exampaperspractice.co.uk

(1)

(3)

(1)

- (c) In industry, powders are often pumped through pipes. If the static charge caused a spark, the powder could ignite and cause an explosion.
 - (i) Is an explosion more likely to happen when pumping very fine powders or when pumping powders that consist of much larger particles?

Give a reason for your answer.

(ii) Suggest **one** way that the risk of an explosion could be reduced.

(1)

(1)

(d) The table gives the minimum ignition energy (MIE) value for a number of fine powders.

The MIE is the minimum amount of energy required to cause a fine powder to ignite.

Type of powder	MIE in millijoules
Coal dust	60.00
Aluminium powder	10.00
Cornstarch dust	0.30
Iron powder	0.12

The MIE values for different substances are all measured in the same way and under the same conditions of pressure and temperature.

Why is this important?

(1) (Total 10 marks)

Q11.

(a) The diagram shows a polythene rod being rubbed with a woollen cloth.

For more help, please visit exampaperspractice.co.uk

- And

The polythene rod becomes negatively charged.

Explain how this happens.

(b) A student put the charged polythene rod on to a balance. The rod was separated from the metal pan of the balance by a thin block of insulating material. The student then held a second charged polythene rod above, but **not** touching, the first rod. The reading on the balance increased.

(i) Explain why the reading on the balance increases.

For more help, please visit exampaperspractice.co.uk

(ii) The student observed that the nearer the two rods are to each other, the bigger the increase in the balance reading.

What should the student conclude from this observation?

(2) (Total 6 marks)

Q12.

(a) The diagram shows a negatively charged plastic rod held close to a thin stream of water. The water is attracted towards the rod.

Which **one** of the following statements explains what is happening to the charge in the water?

Tick (\checkmark) one box.

The positive and the negative charges in the water are attracted to the rod.

The positive and the negative charges in the water are repelled by the rod.

For more help, please visit exampaperspractice.co.uk

The negative charge in the water is repelled by the rod and the positive charge is attracted.

The negative charge in the water is attracted by the rod and the positive charge is repelled.

(1)

(b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

As the bottles go towards the filler, they move around on the conveyer belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.

The company came up with a solution to the problem. Before the bottles reach the filler, they pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.

(i) Explain why the plastic bottles become charged.

(ii) What is an ion?

(iii) Earthing the conveyor belt with a conducting wire would not have solved this problem.

Give a reason why.

(1) (Total 5 marks)

Q13.

(a) A student takes off his nylon fleece and feels a small electric shock. He realises that this happens because his fleece becomes charged.

Explain why the fleece becomes charged.

(b) Only **two** of the following statements are correct.

Put a tick (\checkmark) in the boxes next to the **two** correct statements.

Positively charged objects repel negatively charged objects.

(1)

Electrical charges move easily through metals.	
Static electricity is safe; it never causes any danger.	
An electric current is a flow of electrical charge.	

(c) The diagram shows a lightning conductor attached to the side of a tall building.

		\prec		
Lightning conducto	or			
		\square		
		Me	etal p	olate

If the building is struck by lightning, charge flows to earth through the lightning conductor.

(i) Which of the materials in the list is used to make the lightning conductor?

Draw a ring around your answer.

0. (
Give a reason for your ans	wer.	

The resistance of the lightning conductor is

For more help, please visit exampaperspractice.co.uk

(2)

higher than	
the same as	the resistance of the building.
lower than	

(1)

(iii) It is almost impossible to test different designs of lightning conductor in controlled experiments during a lightning storm.

Suggest a reason why.

Q14.

(a) The diagram shows how static electricity is used to paint a metal car panel.

Use words from the box to complete the following sentences.

attract	opposite	repel	same

All the paint droplets have the same type of charge. This makes the paint droplets

_____ each other and spread out.

The car panel and the paint droplets have the ______ type of

charge. This causes the car panel to ______ the paint droplets.

The car panel is covered by an even layer of paint.

(3)

(b) In which one of the following situations is static electricity dangerous and not useful?

Put a tick (\checkmark) in the box next to your answer.

using a photocopier	
refuelling an aircraft	
a smoke precipitator	

Give a reason for your answer.

(2) (Total 5 marks)

Q15.

(a) The diagram shows a student touching the metal dome of a Van de Graaff generator. When the generator is switched on, the metal dome becomes negatively charged.

Explain why the student's hair stands on end when the generator is switched on.

(b) When the potential difference between the student and a nearby earthed metal dome For more help, please visit exampaperspractice.co.uk

reached 15 kV, a spark jumped between the student and the earthed dome. The spark transformed 30 mJ of energy into heat, light and sound. (1 mJ = 0.001 J)

Calculate the charge carried by the spark.

Charge transferred =_____ coulombs

(2)

(c) What name is given to the rate of flow of charge?

(1) (Total 5 marks)

Q16.

During car journeys, the driver will often become electrostatically charged.

This is more noticeable on dry days than on damp, humid days.

(a) Explain what happens to cause the driver to become charged.

(b) Scientists were asked to find out whether the build-up of charge on the driver depends on the type of material used to make the driver's clothes. The results of the investigation are given in the table.

Material	Humidity	Temperature in °C	Charge on the driver in millicoulombs
Nylon	48%	18	3.0 to 3.2
Wool	48%	18	2.4 to 2.5
Cotton	48%	18	1.4 to 1.7

Humidity is a measure of how much water vapour the air can hold.

(i) Why was it important that the scientists controlled the humidity?

For more help, please visit exampaperspractice.co.uk

(ii) Does the data in the table show that the charge on the driver would always be less if they were to wear cotton clothing?

Give a reason for your answer.

(1) (Total 4 marks)

Q17.

(a) A student rubs a nylon comb on the sleeve of his jumper.

(i) Use words from the box to complete the following sentence.

electrons	hand	jumper	protons		
The comb becom	es negatively o	charged because	9	m	nove
from the student's	S	to	o the comb.		
What type of cha	rge is left on th	e jumper?			
The negatively c	harged comb is	s placed close to other	a charged pl	astic ruler. T	he

Complete the following sentence by drawing a ring around the correct line in the box.

The ruler is

negatively charged positively charged uncharged

- (1)
- (b) Electrostatic charge can damage computer chips. People working with computer chips may wear a special bracelet, with a wire joining the bracelet to earth (the earth wire). Any negative charge on the person will flow through the wire to earth.

(i) Which **one** of the following materials should the bracelet be made from?

Draw a ring around your answer.

copper	plastic	rubber
--------	---------	--------

Give a reason for your answer.

(ii) Which **one** of the following words is used to describe the rate of flow of charge through a wire?

Draw a ring around your answer.

current resistance voltage

(1) (Total 7 marks)

(2)

Q18.

You wash and dry your hair, then comb it with a plastic comb. As you move the comb away from your head some hairs are attracted to the comb.

(a) What has happened to the comb to make it attract the hairs?

- (b) If the comb is now held above some small pieces of dry tissue paper what is likely to happen?
- (1)

(1)

(c) If you rub your hands all over the comb it will no longer attract your hair. Explain why.

(2) (Total 4 marks)

Q19.

A pupil did an experiment following the instructions below.

- 1. Take a polythene rod (AB), hold it at its centre and rub both ends with a cloth.
- 2. Suspend the rod, without touching the ends, from a stand using a stirrup and nylon thread.
- 3. Take a perspex rod (CD) and rub it with another cloth.
- 4. Without touching the ends of the perspex rod bring each end of the perspex rod up to, but without touching, each end of the polythene rod.
- 5. Make notes on what is observed.

The diagram below shows how the apparatus is to be set up.

- (a) When end C was brought near to end B they attracted each other.
 - (i) Explain why they attracted each other.
 - (ii) What would happen if end C were brought near end A?
- (b) The experiment was repeated with two polythene rods.
 - (i) Describe what you would expect the pupil to observe as the end of one rod was brought near to the end of the other.
 - (ii) Explain your answer.

- (2)
- (c) Explain, in terms of electron movement, what happened as the rods were rubbed with the cloths.

For more help, please visit exampaperspractice.co.uk

(3)

(3) (Total 8 marks)

Q20.

A student did an experiment with two strips of polythene. She held the strips together at one end. She rubbed down one strip with a dry cloth. Then she rubbed down the other strip with the dry cloth. Still holding the top ends together, she held up the strips.

- (a) (i) What movement would you expect to see?
 - (ii) Why do the strips move in this way?

(b) Complete the **four** spaces in the passage.

Each strip has a negative charge. The cloth is left with a	
charge. This is because particles called	have been transferred

from the ______ to the ______.

For more help, please visit exampaperspractice.co.uk

(1)

(c) The student tried the experiment using two strips of aluminium. The strips did not move.

Complete **each** of the sentences.

(i) Materials, such as aluminium, which electricity will pass through easily, are

called ______.

(ii) Materials, such as polythene which electricity will **not** pass through easily, are

called ______.

(1) (Total 9 marks)

(1)

Mark schemes

Q1.

	(a)	transfer of <u>electrons</u> mention of positive charge moving negates both	
		marks	1
		from the carpet to the student	1
	(b)	three arrows perpendicular to sphere's surface with all arrows directed inwards and distributed evenly around sphere	1
	(c)	there is a potential difference between the student and the tap do not accept the tap / sink is charged	1
		which causes electrons / charges to transfer from the student or	
		which causes electrons / charges to transfer to the tap	1
		which earths the charge allow the tap is earthed	1
	(d)	carpet / copper has a low resistance allow carpet is a conductor or	
		copper is a conductor	1
		lower / no build-up of charge (on the student) or	
		(so there is a) smaller / no potential difference between student and tap / earth	1
Q2			
	(a)	ammeter and voltmeter symbols correct	1
		voltmeter in parallel with wire	1
		ammeter in series with wire	1
	(b)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6

[8]

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- length measured
- length varied
- current measured
- potential difference measured
- repeat readings
- calculate resistance for each length resistance = potential difference
 - current
- plot a graph of resistance against length
- hazard: high current
- may cause wire to melt / overheat
- may cause burns (to skin)
- use low currents

(c) the temperature of the wire would not change

- (d) the accuracy of the student's results would be higher
 - the resolution of the length measurement would be higher

[12]

1

1

1

3-4

1-2

0

Q3.

(a)	electrons	1
(b)	a positive	1
(c)	the forces are repulsive allow the forces act in opposite directions	1
	the forces are equal in size allow the forces are the same (size)	1
(d)	reproducible	1

Q4.			
(a)	cosmic rays	1	
	radon gas	1	
(b)	radioactive decay is a random process	1	
(c)	the lead lining absorbs the emitted radiation	1	
(d)	subtract the background count from 159	1	
(e)	beta	1	
	beta is negatively charged	1	
	(so is) attracted to positive plate	1	
	or (so is) repelled by negative plate	1	
			[8]

Q5.

(a)

Level 2 (3–4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points.

Level 1 (1-2 marks):

Simple statements are made, but not precisely. The logic is unclear.

0 marks:

No relevant content

Indicative content

- friction (between cloth and rod) causes
- electrons (to) move
- from the acetate rod **or** to the cloth
- (net) charge on cloth is now negative
- (net) charge on rod is now positive
- (b) there is a force of attraction between the acetate rod and the cloth

(reason)

For more help, please visit exampaperspractice.co.uk

4

1

		unlike charges attract		
		or		
		negative charges attract positive charges		
	(\mathbf{c})	incrosco	1	
	(0)		1	
	(d)	0.000025 × 60 000	1	
		1.5 (J)		
		accent 1.5 (.1) with no working shown for 2 marks	1	
				[9]
06				
	. (a)	negatively charged		
			1	
		electrons are transferred	1	
		from the (neutral) object	1	
	(b)	minimum of four lines drawn perpendicular to surface of sphere	_	
		judge by eye	1	
		minimum of one arrow shown pointing away from sphere	Ĩ	
		do not accept any arrow pointing inwards.		
		0	1	
	(0)	Q	1	101
				[0]
Q7				
	(a)	450 allow 1 mark for correct substitution.		
		ie $18 \times 10 \times 2.5$ provided no subsequent step shown	2	
	(b)	(i) friction between child ('s clothing) and slide	2	
	(~)	accept friction between two insulators		
		accept child rubs against the slide		
		accept when two insulators rub (together)		
			1	
		causes electron / charge transfer (between child and slide)		

		accept specific reference, eg electrons move onto / off the		
		child / slide		
		reference to positive electrons / protons / positive charge / atoms transfer negates this mark		
		answers in terms of the slide being initially charged score zero		
			1	
	(ii)	all the charges (on the hair) are the same (polarity)		
		accept (all) the charge/hair is negative / positive		
		accept it is positive/negative		
			1	
		charges / hairs are repelling		
		both parts should be marked together	1	
			1	
	(iii)	charge would pass through the metal (to earth)		
		accept metal is a conductor		
		accept metal is not an insulator		
		accept there is no charge / electron transfer		
		accept the slide is earlied		
			1	
				[7]
Q8.				
(a)	(i)	electrons		
			1	
		a positive		
			1	
	(ii)	(forces are) equal		
		accept (forces are)the same		
		forces are balanced is insufficient	1	
			1	
		(forces act in) opposite directions		
		accept (forces) repel		
		poth sides have the same charge is insufficient	1	
(b)	alur	ninium	1	
			_	[5]

Q9.

 (a) 3rd box The negative charge in the water is repelled by the rod and the positive charge is attracted to the rod.

1

(b)	(i)	friction between bottles and conveyor belt / (plastic) guides accept bottles rub against conveyor belt / (plastic) guides	1	
		charge transfers between bottles and conveyor belt / (plastic) guides accept specific reference eg electrons move onto / off the bottles		
		reference to positive electrons / protons negates this mark	1	
	(ii)	(the atom) loses or gains one (or more) electrons	1	
	(iii)	charge will not (easily) flow off the conveyor belt / bottles		
		accept the conveyor belt / bottles is an insulator / not a conductor accept conveyor belt is rubber	1	
				[5]
Q10.				
(a)	(1)	friction between the beads and pipe		
		accept beads rub against the pipe	1	
		(cause) <u>electrons</u> to transfer		
		accept electrons are lost/gained		
		do not accept negatively charged atoms for electrons		
		3 rd mark point only scores if 2nd mark scores	1	
		from the pipe		
		do not accept from the (negatively) charged pipe		
		or		
		to the beads		
		do not accept to the (positively) charged beads		
		accept negative charge transfer to the beads for 1 mark provided 2 nd or 3 rd marking point not awarded		
		mention of positive charge transfer negates last 2 marking points		
			1	
	(ii)	volume of beads		
	()	accept (75)cm ³		
		or		
		length of pipe		
		accept use the same pipe		
		or speed the beads are poured		
		For more help, please visit exampaperspractice.co.uk		

		poured the same way is insufficient	
		or angle of pipe	
			1
(b)	(i)	the larger the beads the less charge	
()	()	do not accept inversely proportional	
		negative correlation is insufficient	1
			1
	(ii)	(total) charge decrease	
		results would be lower/smaller would be insufficient	1
		beads in contact with pipe (walls) for less time	
		accept less contact (between beads and pipe)	
		accept beads in pipe for less time	
		or smaller surface area (to rub against)	
		accept less pipe to rub against	
		less friction is insufficient	1
(c)	(i)	(pumping very) fine powders	
	()	reason only scores if (very) fine powders given	
		greater charge (build up)	
		accept more static (electricity)	
		accept an answer that correctly relates back to the experimental data	
		or bigher pd/voltage	
		or	
		greater energy	
		accept larger surface area to volume (ratio)	1
	(ii)	idea of earthing (the pipe)	
		accept use metal pipes	
		do not accept use larger particles	1
(d)	to co	ompare (the relative risks)	
		fair test is insufficient	
		you can only have one	
	or	independent variable is insufficient	
	differ	rent conditions change the MIE value	
		accept different conditions change the results	
		do not accept avoid bias	4
			1

Q11.

(a)	elec	strons transfer / removed	
		do not accept negatively charged atoms for electrons	
		this only scores if first mark given	1
	to th	e rod / from the cloth	
		this does not score if there is reference to any original charge on cloth or rod	
		'it' refers to the rod	
		accept negative charge transfer to rod / removed from cloth for 1 mark	
		transfer of positive charge / positive electrons scores zero	1
(b)	(i)	rods / charges repel	1
		creating downward / extra force (on the balance)	
		accept pushing (bottom) rod downwards	
		do not accept increasing the weight / mass	
		charges attracting scores zero	
			1
	(ii)	the (repulsion) force increases as the distance between the <u>charges</u> decreases	
		accept there is a negative correlation between (repulsion) force and distance between <u>charges</u>	
		or (repulsion) force and distance between <u>charges</u> are inversely proportional	
		for both marks	
		examples of 1 mark answers	
		force increases as distance decreases	
		force and distance are inversely proportional	
		negative correlation between force and distance	
		repels more as distance decreases	
		if given in terms of attracting or attraction force this mark does	
			2

[6]

Q12.

(a) 3rd box

The negative charge in the water is repelled by the rod and the positive charge is attracted.

			1	
(b)	(i)	friction between bottles and conveyor belt / (plastic) guides accept bottles rub against conveyor belt / (plastic) guides	1	
		charge transfers between bottles and conveyor belt / (plastic) guides accept specific reference		
		eg electrons move onto / off the bottles		
		reference to positive electrons / protons negates this mark	1	
	(ii)	an atom that has lost / gained electron(s)		
	()	do not accept a charged particle		
			1	
	(iii)	charge will not (easily) flow off the conveyor belt		
	()	accept the conveyor belt / bottle is an insulator / not a conductor		
		accept conveyor belt is rubber		
			1	
				[5]
Q13.				
(a)	flee	ce rubs against shirt		
		it refers to the fleece		
	or		1	
	fricti	on (between fleece and shirt)		
	(cau	ising) <u>electrons</u> to transfer from one to the other		
		accept a specific direction of transfer		
		do not accept charge for electrons		
		positive electrons negates this mark		
		movement of protons negates this mark		
			1	
(b)	Flee	ctrical charges move easily through metals		
(0)	210		1	
	٨٣	lectric current is a flow of clastrical charge		
	An e	electric current is a flow of electrical charge.	1	
			-	
(c)	(i)	copper		
		reason only scores if copper chosen	1	
			1	
		(good electrical) conductor		
		accept it is a metal		
		any mention of heat conduction negates this mark		
			1	

1

1

[8]

[5]

- (ii) lower than
- (iii) accept any sensible suggestion,eg:
 - too many variables (to control)
 - lightning strikes / storms are random / unpredictable
 - do not know which building will be struck
 - do not know when a building will be struck
 - do not know when lightning will happen
 - (very) difficult to create same conditions in a laboratory
 - lightning storms are not the same
 it is not safe is insufficient do not accept lightning does not strike the same place twice

(a)	repel	1
	opposite	1
	attract	1
	correct order only	
(b)	refuelling an aircraft	
	reason cannot score if refuelling aircraft is not chosen	1
	a spark may cause an explosion / fire / ignite the fuel	
	accept the static for a spark	
	accept named fuel	
	there must be a consequence of having a spark	
	do not accept answers in terms of people getting a shock or electrocuted	
		1
_		

Q15.

(a) each hair gains the <u>same</u> (type of) charge or
 (each) hair is negatively charged

	or	do not accept hair becomes positively charged	
	(each) hair	gains electrons	1
	similar cha	rges repel accept positive charges repel providing first marking point is in terms of positive charge	
	or	pardes repel	
	or electrons re	epel	1
(b)	0.000002		•
	or 2 x 10 ⁻⁶	accept correct substitution and transformation for 1 mark	
	or	ie 30 / 15 or .03 / 15000 or 30 / 15000 or .03 / 15	
	2 µ C	answers 2 and 0.002 gain 1 mark	
(\mathbf{c})	current		2
(0)	current	do not accept amp / amperes	1
Q16. (a)	(a) clothing and seat rub together		
		accept friction between clothing and seat	1
	electrons transfer from seat to driver		
	or		
	electrons transfer from driver to seat		
		an answer in terms of rubbing, between clothing and seat and charge transfer without mention of electrons gains 1 mark an answer in terms of friction / rubbing and electron transfer without mention of clothing and seat gains 1 mark	1
(b)	(i) how	wet the air is affects charge (build up) accept humidity affects charge	
	or		
	damp	air is a better conductor	
		For more help, please visit exampaperspractice.co.uk	

[5]

		or		
		damp air has a lower resistance do not accept fair test or as a control unless explained	1	
	(ii)	No – it was only the lowest under these conditions accept answer in terms of changing the conditions may change the results		
		or		
		No – there are lots of other materials that were not tested		
		or		
		Yes – the highest value for cotton is smaller than the lowest value for the other materials		
		do not accept results show that it is <u>always</u> less / smallest	1	F 43
				[4]
Q17. (a)	(i)	electrons	1	
		jumper	1	
	<i>/</i> ···\		1	
	(11)	accept protons		
		accept +	1	
	(iii)	positively charged		
		accept any clear way of indicating the answer	1	
(b)	(i)	copper	1	
		it is an (electrical) conductor only accept if copper is identified do not accept it conducts heat accept it conducts heat and electricity accept copper is the best conductor accept correct description of conduction	1	
	(ii)	current	1	[7]

Q1	8. (a)	becomes (electrically) charged or description of electron movement		
	(4)	for 1 mark	1	
	(b)	comb attracts paper for 1 mark	1	
	(c)	charge/electricity gone to Earth/body for 1 mark each	Ĩ	
			2	[4]
Q1	9. (a)	(i) Ends have charge		
		(ii) Attracts	2	
	(b)	(i) Repulsion	1	
	. ,	(ii) Ends have same charge	1	
	(c)	Electrons move between cloth and rod	1	
		Where move from is positive	3	[8]
Q2	2 0.	(i) (bottom or other and a) may a spart or		
	(a)	repel accept they move apart	1	
		 (ii) have <u>same</u> charge accept both have negative charge (from part (b) do not credit both have positive charge 		
		same or like charges repel not just opposite charges attract	2	
	(b)	positive	1	
		electrons		
		For more nerg, please visit exampaperspractice.co.uk		

			1
	cloth		1
	polyt	hene accept strips	1
(C)	(i)	conductors accept metals	1
	(ii)	insulators accept non-conductors/poor conductors do not credit non-metals	1

[9]