Q1.			
(a)	Milky Way	1	
(b)	distance = 300 000 × 500	1	
	d = 150 000 000 (km)	1	
	an answer of 150 000 000 scores 2 marks	1	
(c)	3		
(d)	accept any number greater than 1.0 and less than 12.0	1	
(e)	9 0.6		
	15	1	
	an answer of 15 scores 2 marks	[7]]
Q2. (a)	(force of) gravity causes the satellite to accelerate (towards the Earth) allow satellite is (constantly) accelerating	1	
	the acceleration causes a change in direction acceleration causes a change in speed negates this mark point	1	
	velocity changes because direction changes	1	
(b)	length of orbit taken from graph = 42 100 (km)	1	
	42 100 = 7.73 × time or 42 100		
	time = $\frac{12.000}{7.73}$		
	allow their distance = $7.73 \times time$	1	
	time (1 orbit) = 5446(s) allow a value consistent with their distance		

number of orbits = $\left(\frac{24 \times 3600}{5446}\right)$

= 15.86

allow
$$(\frac{24}{1.51}) = 15.86$$

allow a value consistent with their distance

number of orbits = 15

allow a value consistent with their distance an answer of 16 scores **4** marks

or

length of orbit taken from graph = $42\ 100\ (km)\ (1)$

 $7.73 = \frac{\text{distance}}{24 \times 3600}$ (1)

distance = $667 \ 872 \ (km) \ (1)$

number of orbits = $\left(\frac{667872}{42100}\right)$

= 15.86(1)

allow a value consistent with their two distances

number of orbits = 15(1)

allow a value consistent with their two distances up to full marks can be awarded for a method calculating velocity in km/h and time in hours an answer of 15 scores **5** marks

(c) the predicted data is very close to the actual data

(d) supported the prediction (made by Bode) allow predicted and actual values are very close

so provides evidence that the equation is true / correct / works / accurate allow proves for provides evidence

[11]

Q3.

(a) dwarf planet

(b) nebula

1

1

1

1

1

	ý	1
	gravity	1
(c)	(becomes a) red giant	1
(d)	the greater the distance (from the Sun) the greater the time taken to orbit the Sun	1
(e)	any value between 3 and 7 inclusive	1
(f)	because some planets do not fit the pattern	1
	named planet that does not fit pattern eg Venus	
	reason why named planet does not fit pattern its temperature is higher than expected or Uranus: its temperature is lower than expected or Neptune: its temperature is higher than expected or Mercury: its temperature is lower than expected	1 1 [9]
Q4. (a)	gamma ravs	
(b)	can travel through the atmosphere	1
(C)	explosion of a red super giant or a supernova	
(d)	1.2 × 10 ⁹ Hz	1
(e)	$3.0 \times 10^8 = 1.2 \times 10^9 \times \lambda$ an answer of 0.25 (m) scores 3 marks allow ecf from (d) $\lambda = \frac{3.0 \times 10^8}{2}$	1

$$=\frac{3.0\times10^{9}}{1.2\times10^{9}}$$

		$\lambda = 0.25$ (m)			1
(9	g)	same as the radio wave			1
(1	f)	expansion due to fusion energy			1
		in equilibrium with gravitational collapse forces acting inwards equal forces acting out mark	twards	gains 1	1
(h)				_
		Level 2: Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.	3-4		
		Level 1: Facts, events or processes are identified and simply stated but their relevance is not clear.	1-2		
		No relevant content	0		
		Indicative content			
		Sun goes from main sequence to red giant			
		then from red giant to white dwarf			
		• when the Sun changes to a red giant the surface temperature will decrease			
		and the relative luminosity will increase			
		• when changing from a red giant to a white dwarf the surface temperature increases			
		and the relative luminosity decreases			
					4 [14]
Q5.					
(;	a)	gravity			1
(b)	as the wire moves through the Earth's magnetic field			

a potential difference is induced between the ends of the wire

the wire must be part of a complete circuit

(c) new trace shows:

1

1

1

	twice the frequency	1	
	twice the amplitude	1	
(d)	dynamo dc generator is insufficient	1	
(e)	the alternator pd changes polarity, the 2^{nd} type of generator does not	1	
(f)	$\frac{230}{V_s} = \frac{690}{57}$	1	
	$V_{s} = \frac{230 \times 57}{690}$	1	
	$V_s = 19 (V)$ an answer of 19 (V) scores 3 marks	1	[11]
Q6.	any one from:		
(4)	 Earth is at the centre (not the Sun) there are fewer planets accept there is no asteroid belt shown accept there are only 5 planets (and not 8) accept other planets have no moons shown 	1	
(b)	Shows the moon in orbit around the Earth accept the planets have circular orbits	1	
(c)	circular accept elliptical	1	
(d)	gravity	1	
(e)	Mira is much more massive	1	[5]

Q7.

(a) gas

correct order only

		1	
	gravity	1	
	protostar accept correct word circled in box provided no answer given in answer space	1	
(b)	the explosion of a massive star	1	
(c)	The telescopes and measuring instruments were not sensitive enough.	1	[5]
Q8. (a)	 (i) (enough) dust and gas (from space) is pulled together accept nebula for dust and gas accept hydrogen for gas accept gas on its own 		

1

T

1

1

1

ignore any ((correct) s	stages l	beyond t	this		

(ii) joining of two (atomic) nuclei (to form a larger one) do not accept atoms for nuclei

dust on its own is insufficient mention of air negates this mark

by:

or

or

gravitaty

gravitational attraction

gravitational forces

- (iii) more sensitive astronomical instruments / telescopes
 or

 infrared telescopes developed
 accept better technology
 more knowledge is insufficient
- (b) (i) (other) planets / solar systems do not accept galaxy moons is insufficient 1
 - (ii) provided evidence to support theory accept proves the theory

 (c) elements heavier than iron are formed only when a (massive) star explodes accept materials for elements accept supernova for star explodes accept stars can only fuse elements up to (and including) iron
 1
 [7]

Q9.

(a)	hydrogen	1
(b)	supernova	1
(c)	red super giant	1
(d)	 any four from: fusion takes place within stars hydrogen formed into helium fusion continued and formed larger elements elements heavier than iron were formed in supernova (heavy) elements were scattered by the supernova explosion. accept light elements formed 	4

Q10.

(a)	(enough) dust / gas (from space)	1
	are pulled together	1
	by gravitational attraction	1
(b)	fusion accept fusion circled in box	1
(c)	forces within it are balanced	1

(d)

red giant white dwarf black dwarf

correct order only

[7]

Q11.

Q11.			
(a)	main sequence star		
	correct order only		
		1	
	supernova	1	
(b)	balanced by		
		1	
			[3]
Q12.			
(a)	gravitational attraction (between the satellite and the Earth)		
(4)	allow gravity		
	allow weight of the satellite		
		1	
(b)	any two from:		
	mass of satellite		
	 speed / velocity (of satellite) radius of orbit / circle 		
	allow boight above the Earth		
	radius / neight alone is insuncient	2	
		-	
(c)	(i) increasing the height (above the Earth's surface) increases the time (for		
	one orbit)		
	allow a positive correlation		
	allow as one gets bigger, the other gets bigger, or vice versa		
	ignore they are directly proportional		
		1	
	(ii) there is no relationship / correlation		
		1	
(d)	Isaac Newton was a respected scientist who had made new discoveries		
	before	1	
		I	[6]
			[~]
Q13.			

red supergiant

do not accept red giant

1

1

[8]

Q14.

(a)	all cc M L L	prrect	
		allow 1 mark for one correct	2
(b)	spe	ed accept 'velocity'	1
(c)	(i)	any one from:	
		it's natural	
		• slowest	
		• furthest (from the centre of the Earth) accept 'others are artificial / made by humans'	1
	(ii)	as the (average) distance decreases the speed increases accept 'there is a negative correlation (between them)' do not accept 'they are inversely proportional'	1
Q15.			

(a) Earth

Sun

Milky Way

Universe

all four in correct order allow **1** mark for Earth <u>and</u> Universe in correct places

(b)	equ	al to	1
(c)	(i)	explosion (of a star) ignore implosion	1
	(ii)	only very massive stars become supernova	1

Mira large enough but sun too small

1

allow **1** mark for each statement Sun too small to give a supernova **or** Mira large enough to give a supernova

[6]

1

Q16.		
(a)	a protostar is at a lower temperature or	
	a protostar does not emit radiation /energy	1
	as (nuclear) fusion reactions have not started	
	accept heat or light for energy	1
(b)	by (nuclear) fusion	
	accept nuclei fuse (together)	
	nuclear fusion and fission negates this mark	1
	of hydrogen to helium	1
	elements heavier than iron are formed in a supernova	
	accept a specific example e.g. heavier elements such as gold are formed in a supernova	
	accept heavier elements (up to iron) formed in red giant/red super giant	
	reference to burning (hydrogen) negates the first 2 marks	1

Q17.

- (a) (i) towards the centre of the circle accept inwards accept a correct description 'along the string' is insufficient
 - (ii) tension (in the string) accept pull of the string 'the string' is insufficient or

weight (on the end of the string) *'the student' is insufficient 'turning action' is insufficient*

(b) (i) each may (also) affect the speed accept results for speed [5]

1

		so only one independent variable accept only one variable affects dependent variable	
		'fair test' is insufficient	
		'they are control variables' is insufficient	1
	(ii)	continuous	
		both required	
		dependent	1
	(iii)	reduces (absolute) timing error (for one rotation) accept too fast to time one	
		or increases / improves reliability / accuracy (for one rotation) ignore checking for anomalous results	
		to work out an average is insufficient	1
(c)	spee	d increases with centripetal force	
		accept positive correlation	
		do not accept proportional	1
(d)	(i)	gravitational pull (of the Earth)	
		accept gravity	1
	(ii)	Νο	
		both parts required – however this may have been subsumed within the reason	
		geostationary orbits once every 24 hours	
		accept a correct comparative description	1
Q18.			

- (a) runs out of hydrogen (in its core) accept nuclear fusion slows down do **not** accept fuel for hydrogen do **not** accept nuclear fusion stops ignore reference to radiation pressure / unbalanced forces
 (b) terrestation deserves a (colotics) hydrogen is the proves to be a statement of the provident of t
- (b) temperature decreases / (relative)luminosity increases as it changes to a red giant
 if both temperature and luminosity are given both must be

if both temperature and luminosity are given both must be correct

1

[9]

temperature increases / (relative) luminosity decreases as it changes to a white dwarf if both temperature and luminosity are given both must be correct 1 correct change in temperature and (relative) luminosity as Sun changes to a red giant and then to a white dwarf an answer changes to a red giant and then white dwarf with no mention or an incorrect mention of temperature or (relative) luminosity change gains **1** mark only if no other marks awarded ignore correct or incorrect stages given beyond white dwarf 1 [4] Q19. red supergiant 1 supernova 1 black hole 1 [3] Q20. (a) gravitational force(s) (1) accept 'gravity' balanced by (force(s) due to) radiation pressure (1) accept equal 2 (b) by (nuclear) fusion (1) of hydrogen to helium (other light elements) (1) allow 'low density' for light accept hydrogen nuclei / atoms form helium response must clearly link one element(s) producing others fusion to produce helium (2) heavy element / elements heavier than iron are only produced (by fusion) in a supernova (1) allow dense for heavy ignore any reference to elements undergoing radioactive decay (to form other elements) 3

[5]

 pulled together by: gravitational attraction or gravitational forces or gravity (b) forces (in the star) are <u>balanced</u> accept equal and opposite for balanced accept equal and opposite for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'black hole' do not accept just 'black hole' black hole forms if star is large enough is insufficient 	(a)	hough) <u>dust and gas</u> (from space) accept nebula for dust and gas accept hydrogen for gas mention of air negates this mark 1
 gravitational attraction or gravitational forces or gravity (b) forces (in the star) are <u>balanced</u> accept equal and opposite for balanced accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'dust and gas' elements distributed throughout space do not accept just 'neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept just 'black hole' do not accept inst is large enough is insufficient 		led together by:
 gravitational forces or gravity (b) forces (in the star) are <u>balanced</u> accept equal and opposite for balanced accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'black hole' do not accept just 'black hole' black hole forms if star is large enough is insufficient 		gravitational attraction or
 gravity (b) forces (in the star) are <u>balanced</u> accept equal and opposite for balanced accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		gravitational forces
 (b) forces (in the star) are <u>balanced</u> accept equal and opposite for balanced accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		gravity 1
 accept equal and opposite for balanced accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 	(b)	ces (in the star) are <u>balanced</u>
 accept in equilibrium for balanced forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		accept equal and opposite for balanced
 forces identified as gravity and <u>radiation pressure</u> both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		accept in equilibrium for balanced 1
 both forces are required gravitational forces inwards balance / equal radiation pressure outwards for 2 marks accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'black hole' do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		ces identified as gravity and <u>radiation pressure</u>
 gravitational forces inwards balance / equal radiation pressure outwards for 2 marks a accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		both forces are required
 accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		gravitational forces inwards balance / equal radiation pressure outwards for 2 marks
 accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going (c) (explodes as) a supernova any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		accept for 2 marks an answer in terms of sufficient hydrogen to keep the <u>fusion</u> reactions going
 (c) (explodes as) a supernova any one from: outer layer(s) thrown into space outer layer(s) thrown into space scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		accept for 1 mark an answer in terms of sufficient fuel to keep the <u>fusion</u> reactions going
 any one from: outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 	(c)	(plodes as) a supernova
 outer layer(s) thrown into space do not accept just 'thrown into space' scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		/ one from:
 scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas' elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		outer layer(s) thrown into space do not accept just 'thrown into space'
 elements distributed throughout space do not accept just 'distributed' matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		scatters dust and gas into space (for the formation of new stars) do not accept just 'dust and gas'
 matter left behind / core may form a neutron star do not accept just 'neutron star' a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		elements distributed throughout space do not accept just 'distributed'
 a black hole will form if the gravitational forces are enormous / sufficient is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 		matter left behind / core may form a neutron star do not accept just 'neutron star'
		a black hole will form if the gravitational forces are enormous / sufficient mass is left behind do not accept just 'black hole' do not accept any references to 'dark bodies' or 'black dwarfs' black hole forms if star is large enough is insufficient 1

[6]

Q22.

QLL.			
(a)	(i) gases (1)		
	gravity (1)		
	correct order essential for credit	2	
	(ii) fusion	-	
		1	
	(iii) billions		
		1	
(b)	Milky Way		
	u.c. initials not essential	1	
			[5]
000			
QZ3. (a)	fusion (1)		
()	of hydrogen/H (stoms)(1)		
	do not credit any response which looks like 'fission' or the 'word' 'fussion'		
	credit only if a nuclear reaction	2	
(1.)		2	
(b)	tusion of other/lighter atoms/elements (1) reference to big bang nullifies both marks		
	during super nova/explosion of star(s) (1)	2	
(c)	explosion of star(s)/super nova (1)		
	reference to big bang nullifies both marks reference to the star running out of energy/material nullifies both marks		
	at the end of the 'life' of star(s) / when they 'die' (1)		
		2	[6]
			[9]

Q24.

(a)	gravitational			
		accept gravity		
		do not accept weight		
				1
(b)	(i)	planet(s) accept comet(s) accept asteroid(s) do not accept moon(s)		1

	(ii)	balanced accept equal / the same / are in equilibrium		
	(iii)	Milky Way	1	
		accept milky way	1	[4]
Q25.	(1)			
(a)	(1)	the bigger the <u>masses</u> (of the dust and gases then) the bigger the force / gravity (between them)		
		accept the converse	1	
	(ii)	the greater the distance (between the dust and gases then) the smaller the force / gravity (between them)		
		accept the converse	1	
(b)	<u>radi</u> thes	<u>ation 'pressure'</u> and gravity / gravitational attraction e are balanced / in equilibrium		
		must be in correct context do not accept are equal	1	
	or t	here is sufficient / a lot of hydrogen / fuel to last a very long time second mark consequent on first	1	
(C)	any	two from:		
	•	hydrogen runs out / is used up		
	•	nuclei larger than helium nuclei formed accept bigger atoms are formed however do not accept any specific mention of an atom with a mass greater than that of iron		
	•	(star expands to) / become(s) a <u>red giant</u>	2	[6]
Q26.				

- (a) any **two** from:
 - nuclei / atoms of light elements fuse accept hydrogen or helium for light elements accept join for fuse accept for 1 mark, by nuclear fusion answers about fission negates a mark
 - each (fusion) reaction releases energy / heat / light

	 lots 	of reactions occur	2
(b)	presence	of nuclei of the heaviest / heavy / heavier elements	
		accept atom for nuclei	1
(c)	(i) (ma	atter / mass) with such a high density / strong gravitational (field)	1
	elec	ctromagnetic radiation / light is pulled in accept nothing can escape	
		do not accept answers in terms of an empty void	1
	(ii) X-ra	ays	
		accept e-m radiation / e-m waves	1 [6]
Q27.			
giant			1
supe	ernova		1
neut	ron		1
			[3]
Q28.			
(a)	converted	d into helium	
		accept helium created accept converted into heavier elements accept used up in nuclear fusion / to produce energy	
		do not accept any reference to burning	1
(b)	turne / ov	nands into a red gight	
(D)		contradictions negate mark	
		contradictione negate man	1
	contracts	s and explodes or becomes a supernova	1
	may form	n a (dense) <u>neutron star or</u> (if enough mass shrinks to) form a <u>black</u> accept forms a neutron star and (then) a black hole	hole
			1
	Quality o	f written communication	
		correct points must be in sequence	1
(c)	(i) sup	pernova or remains of an earlier star	

			1	
	(ii)	younger or not formed at the time of the Big Bang		
			1	[7]
				[,]
Q29.				
(i)	from	a (giant) cloud of gas or hydrogen	1	
	conc	lensed or pulled into a smaller volume by gravity	1	
(ii)	any	three from:		
	•	fusion decreases or stops		
	•	collapses rapidly causing the (core) temperature to rise		
	•	(inward) gravitational forces no longer balance (outward) pressure		
	•	expands		
	•	and becomes a red giant		
	•	it cools		
	•	then becomes a white dwarf		
	•	helium may fuse if the sequence is incorrect deduct [1] therefore maximum 2		
		marks	3	
				[5]
030				
(a)	fusio	n		
		accept fussion	1	
	000	ray producing process		
	ene	accept heat and/or light for energy		
		accept fussion		
			1	
(b)	up te	o 2 points from: 3 marks for 3 points in sequence with no contradiction		
	•	expands		
		2 marks for 2 points in sequence with no contradiction		
	•	cools		
	•	forms a red giant		

		,		
		up to 2 points from: do not accept 'it turns red'		
		contracts		
		increases in temperature		
		• forms a white dwarf ignore further reference to black dwarfs, black holes, nebulae, supernovae	3	[5]
Q3	1.			
	(a)	gravitational attraction for 1 mark	1	
	(b)	gravitational (in); high internal temperature generates force (out) for 1 mark each	2	
	(c)	star expands; to form red giant; then contracts/collapses; to form white dwarf/neutron star/black hole/pulsar; they may explode/become supernova <i>any four for 1 mark each</i>		
	(d)	engulfed by red giant/blown up by star/bit by debris from star: sucked into h	4 black	
	(4)	hole for 1 mark	1	[8]
Q3	5 2. forme gravi	ed from dust or gas (unless in atmosphere) which is pulled together by tational forces high temperature inside		[2]
Q3	3 3. (i)	the nuclei of hydrogen/smaller atoms join to make helium/larger atoms <i>for 1 mark each</i>	3	
	(ii)	the mass of the large nucleus (atom) is less than the mass of the smaller nuclei (atoms)	-	

for 1 mark

mass loss converted into energy or small mass loss given a large amount of energy for 1 mark

[5]

Q34.

(a) the Sun is subject to two <u>balancing</u> forces / 2 forces in equilibrium the forces are: <u>gravity</u> making it contract **or** inward force due to gravity <u>and a force due to temperature / heat / energy / radiation pressure</u> making it expand **or** outward force due to temperature / heat / energy / radiation pressure for 1 mark each

3

6

(b) Read all the answer first. Stop after 6 marks.

hydrogen / fuel used up owtte the star will expand and become a red giant it will contract under gravity become a white dwarf it may explode and become a supernova throwing dust and gas into space leaving a dense neutron star / black hole

(no mark for contradiction) any six for 1 mark each

Q35.

any **three** from

max 2 if stages but no explanation

- the star (Sun) expands because (inward) gravitational forces no longer balance (outward) force accept the star collapses rapidly causing the core temperature to increase and the star to expand accept it expands because the forces are unbalanced
- to become a red giant
- when the fusion stops it contracts / cools

accept (when hydrogen is used up) it collapses under gravity accept when fusion stops it contracts and explodes

• to become a white dwarf

accept to become a supernova / pulsar / neutron star / black hole (only if red giant has exploded)