

EXAM PAPERS PRACTICE

Sine \& Cosine Rules

Model Answer

Calculate $P R$.

NOT TO SCALE

In triangle $A B C, A B=2 x \mathrm{~cm}, A C=x \mathrm{~cm}, B C=21 \mathrm{~cm}$ and angle $B A C=120^{\circ}$. Calculate the value of x. Since $\angle B A C=120^{\circ}$

As we can sec that -

$$
\begin{gather*}
\therefore \angle A B D= \\
\angle B D C=90^{\circ} \\
\angle B A D=180^{\circ}-\angle B A C \\
=180^{\circ}-120^{\circ} \\
=60^{\circ} \\
C o(\angle B A D)=\frac{A D}{A B} \tag{3}\\
\Rightarrow A C 0^{\circ}=\frac{A D}{A B} \\
\frac{1}{2}=\frac{A D}{2 \times} \\
\\
A D=\frac{2 X}{2} \\
\Rightarrow \quad A D=
\end{gather*}
$$

Exam
Pand

Since, length cannot be negetive
so, $x=3 \sqrt{7}$
Therefore $x \mathrm{~cm}=3 \sqrt{7} \mathrm{~cm}$.
For more help, please visit our website www.exampaperspractice.co.uk

The diagram shows 3 ships A, B and C at sea.
$A B=5 \mathrm{~km}, B C=4.5 \mathrm{~km}$ and $A C=2.7 \mathrm{~km}$.
(a) Calculate angle $A C B$.

Show all your working.

[4]
$c^{2}=a^{2}+b^{2}-2 a b \cos c$
$\cos c=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\cos c=\frac{(4.5)^{2}+(2.7)^{2}-(5)^{2}}{2 \times 4.5 \times 2.7}$
$\cos c=\frac{20.25+7.29-25}{24.3}=\frac{2.54}{24.3}$
$\cos c=0.10453$
$c=\cos ^{-1}(0.10453)=84^{\circ}$
Hence $\angle A C B=84^{\circ}$
(b) The bearing of A from C is 220°.

Calculate the bearing of B from C.
$\therefore \angle A C D=220^{\circ}-180^{\circ}=40^{\circ}$
$\because \angle A C B=84^{\circ}$
$\therefore \angle D C B=84^{\circ}-40^{\circ}=44^{\circ}$
$\therefore 180^{\circ}-44^{\circ}=136^{\circ}$
$\therefore B$ from C is 136°

The diagram shows three points P, Q and R on horizontal ground.
$P Q=50 \mathrm{~m}, P R=100 \mathrm{~m}$ and angle $P Q R=140^{\circ}$.
(a) Calculate angle $P R Q$.
(b) The bearing of R from Q is 100°.

Find the bearing of P from R.

$$
\begin{aligned}
& \text { In triangle } P Q R \text {. } \\
& \frac{P Q}{\sin P R Q}=\frac{P R}{\sin P Q R} \\
& \text { \{Sine law \} } \\
& \frac{50}{\sin P R Q}=\frac{100}{\sin 140^{\circ}} \\
& \frac{1}{\sin P R Q}=\frac{2}{\sin 140^{\circ}} \\
& \sin P R Q=\frac{\sin 140^{\circ}}{2} \\
& \text { D } \approx \frac{0.980}{2} \\
& =0.49 \\
& \text { so } P R Q \approx 29.34^{\circ}
\end{aligned}
$$

A triangle has sides of length $2 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm .

Calculate the value of the largest angle in this triangle.
\{ Cosine theorem \}
$A B^{2}=A C^{2}+B C^{2}-2 A C \cdot B C \cdot \cos C$
$81=64+4-2 \cdot 8 \cdot 2 \cdot \cos C$
$81=68-32 \cos C$
$32 \cos C=-13$
$\cos C=\frac{-13}{32}$
$C=\arccos \left(\frac{-13}{32}\right)=113.97^{\circ}$

Exam
Papers
Practice

NOT TO SCALE

The diagram shows three touching circles.
A is the centre of a circle of radius x centimetres.
B and C are the centres of circles of radius 3.8 centimetres. Angle $A B C=70^{\circ}$.
Find the value of x.

$\angle B A C=40^{\circ}$
$\cos 40^{\circ}=\frac{A B^{2}+A C^{2}-B C^{2}}{2 A B \cdot A C}$
$\therefore B C=2 \times 3.8=7.6$.
$A B=A C=x+3.8$.

In the circle, centre O, the chords $K L$ and $P Q$ are each of length 8 cm . M is the mid-point of $K L$ and R is the mid-point of $P Q . \quad O M=3 \mathrm{~cm}$.
(a) Calculate the length of $O K$.

The length of OK is 5 cm .

Exam

 [2]

(b) $R M$ has a length of 5.5 cm . Calculate angle $R O M$.

Answer: 132.9 degrees

NOT TO SCALE

Calculate $A C$.
$\frac{\overline{\mathrm{BC}}}{\sin (\angle \mathrm{BAC})}=\frac{\overline{\mathrm{AC}}}{\sin (\angle \mathrm{ABC})}$
$\frac{8.15}{\sin \left(110^{\circ}\right)}=\frac{\overline{\mathrm{AC}}}{\sin \left(30^{\circ}\right)}$
$\overline{\mathrm{AC}}=4.337 \mathrm{~m}$

Question 9

Find the value of x.
$\frac{24}{\sin x^{\circ}}=\frac{39}{\sin 71.8^{\circ}}$
$x=35.46^{\circ}$

Find the value of p.

$$
\cos p^{\circ}=\frac{2.8^{2}+3.6^{2}-5.3^{2}}{2(2.8)-(3.6)}=-0.405 \Rightarrow p^{\circ}=113.89^{\circ}
$$

$$
p=113.89
$$

Exam Papers Practice

Calculate the value of y.
since $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin c}=R$
The angles are $74^{\circ}, 39^{\circ}$.
The side is $y \mathrm{~cm}$ and 12.4 cm
So. $\frac{12.4}{\sin 74^{\circ}}=\frac{y}{\sin 39^{\circ}}$
so $y=8.125 \mathrm{~cm}$

Question 12

Use the sine rule to calculate $B C$.

$$
\begin{aligned}
& \overline{\mathbf{B C}}=\mathbf{1 2 . 1 8 5} \mathbf{~ c m} \\
& \frac{\overline{\mathrm{AB}}}{\sin (\angle \mathrm{ACB})}=\frac{\overline{\mathrm{BC}}}{\sin (\angle \mathrm{BAC})} \\
& \frac{24}{\sin \left(100^{\circ}\right)}=\frac{\overline{\mathrm{BC}}}{\sin \left(30^{\circ}\right)} \\
& \overline{\mathrm{BC}}=12.185 \mathrm{~cm}
\end{aligned}
$$

In triangle $A B C, A B=6 \mathrm{~cm}, B C=13 \mathrm{~cm}$ and angle $A C B=23^{\circ}$. Calculate angle $B A C$, which is obtuse.

