
 EXAM PAPERS PRACTICE

Similarity

Question Paper

The length of a backpack of capacity 30 litres is 53 cm .
Calculate the length of a mathematically similar backpack of capacity 20 litres.

Question 2

The two barrels in the diagram are mathematically similar.

The smaller barrel has a height of $h \mathrm{~cm}$ and a capacity of 100 litres. The larger barrel has a height of 90 cm and a capacity of 160 litres.

Work out the value of h.

In the diagram, $A B$ and $C D$ are parallel.
$A D$ and $B C$ intersect at X.
$A B=8 \mathrm{~cm}, C D=4 \mathrm{~cm}, C X=2 \mathrm{~cm}$ and $D X=2.8 \mathrm{~cm}$.
(a) Complete this mathematical statement.

Triangle $A B X$ is \qquad to triangle $D C X$.
(b) Calculate $A X$.
(c) The area of triangle $A B X$ is $y \mathrm{~cm}^{2}$.

Find the area of triangle $D C X$ in terms of y.

Two bottles and their labels are mathematically similar.
The smaller bottle contains 0.512 litres of water and has a label with area $96 \mathrm{~cm}^{2}$. The larger bottle contains 1 litre of water.

Calculate the area of the larger label.

Question 5

Two cups are mathematically similar.
The larger cup has capacity 0.5 litres and height 8 cm .
The smaller cup has capacity 0.25 litres.
Find the height of the smaller cup.
(a)

A cylinder has height 20 cm .
The area of the circular cross section is $74 \mathrm{~cm}^{2}$.
Work out the volume of this cylinder.
(b) Cylinder A is mathematically similar to cylinder B.

NOT TO
SCALE

The height of cylinder A is 10 cm and its surface area is $440 \mathrm{~cm}^{2}$.
The surface area of cylinder B is $3960 \mathrm{~cm}^{2}$.
Calculate the height of cylinder B.

A, B, C and D lie on a circle. $A C$ and $B D$ intersect at X.
(a) Give a reason why angle $B A X$ is equal to angle $C D X$.
(b) $A B=4.40 \mathrm{~cm}, C D=9.40 \mathrm{~cm}$ and $B X=3.84 \mathrm{~cm}$.
(i) Calculate the length of $C X$.
(ii) The area of triangle $A B X$ is $5.41 \mathrm{~cm}^{2}$.

Calculate the area of triangle $C D X$.

NOT TO
SCALE

A company makes solid chocolate eggs and their shapes are mathematically similar. The diagram shows eggs of height 2 cm and 6 cm .
The mass of the small egg is 4 g .
Calculate the mass of the large egg.

The diagrams show two mathematically similar containers.
The larger container has a base with diameter 9 cm and a height 20 cm .
The smaller container has a base with diameter $d \mathrm{~cm}$ and a height 10 cm .
(a) Find the value of d.
(b) The larger container has a capacity of 1600 ml .

Calculate the capacity of the smaller container.

$A P B$ and $A Q C$ are straight lines. $P Q$ is parallel to $B C$.
$A P=8 \mathrm{~cm}, P Q=10 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$.
Calculate the length of $A B$.

A cylindrical glass has a radius of 3 centimetres and a height of 7 centimetres.
A large cylindrical jar full of water is a similar shape to the glass.
The glass can be filled with water from the jar exactly 216 times.
Work out the radius and height of the jar.

Question 12

A car manufacturer sells a similar, scale model of one of its real cars.
(a) The fuel tank of the real car has a volume of 64 litres and the fuel tank of the model has a volume of 0.125 litres.
Show that the length of the real car is 8 times the length of the model car.
(b) The area of the front window of the model is $0.0175 \mathrm{~m}^{2}$. Find the area of the front window of the real car.
(a)

In the diagram triangles $A B E$ and $A C D$ are similar.
$B E$ is parallel to $C D$.
$A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}, B E=4 \mathrm{~cm}, A E=8 \mathrm{~cm}, C D=p \mathrm{~cm}$ and $D E=q \mathrm{~cm}$. Work out the values of p and q.
(b) A spherical balloon of radius 3 metres has a volume of 36π cubic metres.

It is further inflated until its radius is 12 m .
Calculate its new volume, leaving your answer in terms of π.

The two cones are similar.
(a) Write down the value of l.
(b) When full, the larger cone contains $172 \mathrm{~cm}^{3}$ of water.

How much water does the smaller cone contain when it is full?
(a)

NOTTO
SCALE

Work out the value of k.
(b)

The diagram shows two mathematically similar vases.
Vase A has height 20 cm and volume $1500 \mathrm{~cm}^{3}$.
Vase B has volume $2592 \mathrm{~cm}^{3}$.
Calculate h, the height of vase B.

Triangle $A B C$ is similar to triangle $P Q R$.

Find $P Q$.

NOT TO
SCALE

Triangle $A B C$ is similar to triangle $D E F$.
Calculate the value of
(a) x,
(b) y.

Two cylindrical cans are mathematically similar.
The larger can has a capacity of 1 litre and the smaller can has a capacity of 440 ml . Calculate the diameter, d, of the 440 ml can.

The two containers are mathematically similar in shape.
The larger container has a volume of $3456 \mathrm{~cm}^{3}$ and a surface area of $1024 \mathrm{~cm}^{2}$. The smaller container has a volume of $1458 \mathrm{~cm}^{3}$.

Calculate the surface area of the smaller container.

The volumes of two similar cones are $36 \pi \mathrm{~cm}^{3}$ and $288 \pi \mathrm{~cm}^{3}$.
The base radius of the smaller cone is 3 cm .
Calculate the base radius of the larger cone.

A company sells cereals in boxes which measure 10 cm by 25 cm by 35 cm .
They make a special edition box which is mathematically similar to the original box.
The volume of the special edition box is $15120 \mathrm{~cm}^{3}$.
Work out the dimensions of this box.

