E目 EXAM PAPERS PRACTICE

Sets \& Venn Diagrams

Model Answers

$Q=\{2,4,6,8,10\}$ and $R=\{5,10,15,20\}$.
$15 \in P, \mathrm{n}(P)=1$ and $P \cap Q=\emptyset$.
Label each set and complete the Venn diagram to show this information.

The shaded area in the diagram shows the set $(A \cap C) \cap B^{\prime}$.
Write down the set shown by the shaded area in each diagram below.

\mathscr{E}

$(A \cup B \cup C)^{\prime}$

$B \cap(A \cup C)^{\prime}$

Question 3

Shade the required regions in the Venn diagrams below.

$(A \cap B) \cup C$
[2]
\mathscr{E}

$(A \cup B)^{\prime} \cap C$

$(A \cap B) \cup C$

Shade the region required in each Venn Diagram.

To answer this question we first need to understand set notation:

- $\quad A^{\prime}=$ Everything not in A
- $\quad A \cap B=$ Everything in both A and B
- $\quad A \cup B=$ Everything in A or B

Question 5

$$
\mathscr{E}=\{1,2,3,4,5,6,7,9,11,16\} \quad P=\{2,3,5,7,11\} \quad S=\{1,4,9,16\} \quad M=\{3,6,9\}
$$

(a) Draw a Venn diagram to show this information.

(b) Write down the value of $n\left(M^{\prime} \cap P\right)$.

Question 6

On the Venn diagrams shade the regions
(a) $A^{\prime} \cap C^{\prime}$,

A^{\prime} represents the elements which are NOT in A.

Similarly, C' represents the elements which are NOT in C.

The intersection of the 2 represents all the elements, except the ones which are in Set A or Set C.

(b) $(A \cup C) \cap B$.

The union of Sets A and C represents all the elements in both sets.

The intersection with Set B represents the elements in both Sets A and C which are also in

Set B.

Therefore, we shade only the intersections of Set A and Set B and Set C and Set B.

Question 7

(a) Shade the region $A \cap B$.

$A \cap B$ represents the area common to both Set A and B.

(b) Shade the region $(A \cup B)^{\prime}$.

The reunion of 2 Sets represents all the elements in both Set A and B. The complement of this reunion would be any area which is not Set A or Set B.

(c) Shade the complement of set B.

The complement of B represents all regions except Set B.

Question 8

$\mathrm{n}(\mathscr{E})=21, \mathrm{n}(A \cup B)=19, \mathrm{n}\left(A \cap B^{\prime}\right)=8$ and $\mathrm{n}(A)=12$.
Complete the Venn diagram to show this information.

Venn diagrams notations:
$A^{\prime}=$ complement of A - the elements that are not in Set A
$A \cup B=$ the union of Set A and Set B - the elements that are in either Set A or Set B
$A \cap B=$ the intersection of Set A and Set B - this represents the elements that are both in Set A and in Set B

To calculate the numbers on the result above:
$n(C)=21$, so the total number of elements is 21 .
$n(A \cup B)=19$

From these 2 conditions we understand that the reunion of A and B is 19 elements so the last 2 elements are outside the reunion.
$n(A)=12$, so the total number of elements in diagram A is 12 .
$n\left(A \cap B^{\prime}\right)=8$, so the intersection of the elements that are in A with the elements that are not in B is 8 . This means that there are 8 elements in A which are not in B.

By subtracting 12-8=4 we deduce that there are 4 elements which are common to both Set A and Set B.

The rest of the elements until the total number of 21 are the elements which are only in Set B: $21-(2+4+8)=7$

Question 9

$\mathscr{E}=\{40,41,42,43,44,45,46,47,48,49\}$
$A=$ \{prime numbers $\}$
$B=\{$ odd numbers $\}$
(a) Place the 10 numbers in the correct places on the Venn diagram.

The prime numbers from the list are: $41,43,47$

The odd numbers are: $41,43,45,47,49$

(b) State the value of $\mathrm{n}\left(B \cap A^{\prime}\right)$.

Venn diagrams notation is as follows:
$A^{\prime}=$ complement of A - the elements that are not in Set A
$A \cap B=$ the intersection of Set A and Set B - this represents the elements
that are both in Set A and in Set B
$n\left(B \cap A^{\prime}\right)$ means the number of elements which are in B and are not in A
$n\left(B \cap A^{\prime}\right)=2$

The Venn diagram shows the numbers of elements in each region.
(a) Find $\mathrm{n}\left(A^{\cap} B^{\prime}\right)$. B^{\prime} refers to elements not in B, i.e. 3 and 5 .
$A \cap B^{\prime}$ is whatever elements are common to both A and B^{\prime}.
$n\left(A \cap B^{\prime}\right)$ is the number of elements that are common to both A and B^{\prime}, which here is

3
(b) An element is chosen at random.

Find the probability that this element is in set B.
There are 27 elements in total here and 19 of them are in B, therefore the probability that an element chosen is in B is

19/27
(c) An element is chosen at random from set A.

Find the probability that this element is also a member of set B.

There are 10 elements in set A and 7 of them is also in set B therefore the probability that the element chosen is in set B is

7/10
(d) On the Venn diagram, shade the region $(A \cup B)^{\prime}$.
$(A \cup B)^{\prime}$ is the area that is not the union of A added with B.

The Venn diagram shows the number of elements in each set.
(a) Find $\mathrm{n}\left(P^{\prime} \cap Q\right)$.

We are looking for a region, which is the intersection of Q and not P.
This must be the region, which belongs to Q only.

$$
n\left(P^{\prime} \cap Q\right)=\mathbf{1 0}
$$

(b) Complete the statement
n(. \qquad $)=17$.

We can get 17 by summing the regions of only P, intersection of P and Q and neither P or Q.

This is the region: either belongs to P or does not belong to Q .
Therefore:

$$
n\left(\boldsymbol{P} \cup \boldsymbol{Q}^{\prime}\right)=17
$$

Shade the region required in each Venn diagram.

Question 13

The lights and brakes of 30 bicycles are tested.
The table shows the results.

	Lights	Brakes
Fail test	3	9
Pass test	27	21

The lights and brakes both failed on one bicycle only.
$\mathscr{E}=\{30$ bicycles $\}$
Complete the Venn diagrams.

(a) Use the information in the Venn diagram to complete the following.
(i) $P \cap Q=\{i, j\}$
(ii) $P^{\prime} \cup Q=\{i, j, k, m, n\}$
(iii) $\quad \mathrm{n}(\mathrm{P} \cup Q)^{\prime}=2$
(b) A letter is chosen at random from the $\operatorname{set} Q$.

Find the probability that it is also in the set P.
$\frac{2}{3}$
(c) On the Venn diagram shade the region $P^{\prime} \cap Q$.

(d) Use a set notation symbol to complete the statement.

$$
\{f, g, h\} \subset P
$$

Shade the required region on each Venn diagram.

Venn diagrams notations:

$A^{\prime}=$ complement of A - the elements that are not in Set A
$A \cup B=$ the union of Set A and Set B - the elements that are in either Set A or

Set B

$A \cap B=$ the intersection of Set A and Set B - this represents the elements that are both in Set A and in Set B

$A^{\prime} \cup B$

$A^{\prime} \cap B^{\prime}$

Shade the required region in each of the Venn diagrams.

A^{\prime}

A^{\prime}

$(P \cap R) \cup Q$

Shade the required region on each Venn diagram.

$A \cup B^{\prime}$ is a region which belongs to either A or does not belong to B .

$(A \cap B)^{\prime}$ is a region which does not belong to the intersection of A and B .
\mathscr{E}

$(A \cap B)^{\prime}$

Shade the required region on each Venn diagram.

$A \cap B^{\prime}$

$A \cap B^{\prime}$

$(P \cup Q) \cap R^{\prime}$

$(P \cup Q) \cap R^{\prime}$

