

GCSE AQA Maths 8300

Sequences

Answers

"We will help you to achieve A Star"

IT WILL BE IF N IS A WHOLE NUMBER IN

THIS IS NOT A WHOLE AND SO 108 IS NOT A TERM IN THIS SERVENCE

$$n^{m} \text{ Tekm} = 3n-1$$
So $(n+1)^{m} \text{ Tekm} = 3(n+1)-1$

Answer 3

Here are the first five terms of an arithmetic sequence.

(a) Write down an expression, in terms of n, for the nth term of this sequence.

At Term = 3n + k Foremula Work For n=1When n=1 Term = 2.

So k Must $k \in -1$ So n Term = 3n-1

Here are the first four terms of an arithmetic sequence.

(a) Find, in terms of n, an expression for the nth term of this arithmetic sequence.

NTH TERM = 6N + k THE FIRST TERM WORKS

N=1: 1ST TERM = 6+k = 11

NTH TERM = 6N+S

Answer 5

Here are the first five terms of an arithmetic sequence

(a) Write down an expression, in terms of n, for the nth term of this sequence.

nt TERM = 4n + k 2 CHOUSE k TO MAKE
THE FIRST TERM WORK
WHEN n=1, 15T TERM IS 2

Sok=-2

non Term = 4n-2

Answer 8

Here are the first five terms of an arithmetic sequence.

(a) Find, in terms of
$$n$$
, an expression for the n th term of this sequence.

When $n=1$ n^{th} $Texan=4$

So $S \times 1 + k = 4$
 $k=-1$

When $s=1$
 $s=-1$
 $s=1$
 $s=1$

Here are the first 5 terms of a quadratic sequence.

1

3

7

13

21

Find an expression, in terms of n, for the nth term of this quadratic sequence.

2 4 6 8 2 2 2 2 2 3

 $\frac{2a}{2} = \frac{2}{2}$

a = 1

QUADRATIC SEQUENCES

nTH TERM = an2 + bn + c

n=1 n=2 n=3

a+b+c 4a+2b+c 9a+8b+c

3a+b Sa+b

> 3a+b Sa+b

> 2a

Compare Highlighter Terms
WITH DIFFERENCES IN YOUR
SEQUENCE TO FIND a,b AND c

3a+b = 2

3 + 6 = 2 -3 6 = -1

a + b + c = 1 1 - 1 + c = 1 c = 1

 $n^m Term = n^2 - n + 1$

(b) The 3rd term of this sequence is 21 and the 6th term is 96.

Find the value of a and the value of b. You must show all your working.

$$n=6: G^{TH} Term = a \times 6^{2} + b \times 6$$

$$= 36a + 6b$$

$$D\{n=3:$$
 $9a+8b=21$ O Linear Simultaneous Equations USE "Elimination" METHOD

 $u=6:$ $36a+6b=96$ O

$$(2)-(3)$$
 $\frac{18a}{18}$ = $\frac{54}{18}$ $a = 3$

$$2^{2} + 1$$

Answer 12

Here are the first five terms of a different sequence.

An expression for the *n*th term of this sequence is $3n - n^2$ (b) Write down, in terms of *n*, an expression for the *n*th term of a sequence whose

(b) Write down, in terms of *n*, an expression for the *n*th term of a sequence whose first five terms are

$$n^{tn} = (3n-n^2) \times 2$$

$$= 2(3n-n^2)$$

Answer 14

(b) Show that the 5th term of S is $7 + 5\sqrt{2}$

N: (1 2 3 4 5) $N^{m} \text{ Torm}: \sqrt{2}-1 1 \sqrt{2}+1$ $= \sqrt{2}+1 \sqrt{2}$

The population of bacteria in flask A at the start of the 10th day is k times the population of bacteria in flask A at the start of the 6th day.

$$DAYN = 1000 \times 1.5^{n-1}$$
 $DAY(0 = 1000 \times 1.5^{9})$
 $DAY6 = 1000 \times 1.5^{5}$

The population of bacteria in flask A at the start of the foth day.

(b) Find the value of k.

Day
$$n = 1000 \times 1.5^{9}$$

Day $0 = 1000 \times 1.5^{9}$

Day $0 = 1000 \times 1.5^{9}$