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Question 1 EXAM PAPERS PRACTICE

Here are the first four terms of a sequence.
23 17 11 5
(a) Find the nextterm. [1]

Based on the pattern, each term is 6 less than the previous term.
Therefore, the next term would be 5 — 6 = —1.

(b) Find the nth term.

—6n + 29

Question 2

7’ 57 39 1) _17

(a) Find the next term in this sequence.

Page 1

Based on the pattern, each term is 2 less than the previous term. Therefore, the next term in the sequence would be — 1 -2 = —3.

Here is the complete sequence:
7,5,3,1,—1,—3,...

(b) Find the nth term of the sequence.

The first term is 7 and each subsequent term takes away another 2 . This gives us

u1=7
U2:7—2

U3 =7-2x2
U4=7—2X3

We can see that in general we can write
Uy, =7—2(n—1)

This can also be written as:

Uy, =9 —2n
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Find the nth term of each sequence.

Question 3

The sequence is just multiples of 4 .
4—4x1, 8=4x2, 12=4x3 1]
The n-th term is: 4n

(@ 4, 8, 12, 16, 20, ..

()11, 20, 35, 56, 83, .. 2]

The relation is not linear, as the common difference changes.

We guess that the relation is quadratic with general form an? + bn + c.
Use given numbers to form three equations forn =1,n =2 andn = 3.
a+b+c=11

4a+2b+c =20

9a +3b+c=35

Subtract the first equation from the second: 3a +b =19

Subtract the first equation from the third: 8a + b = 24

From these two equations, we can see that b = 0 and a = 3.

Use the first equation to calculate the value of ¢ :

3+04c=11

c=38

Therefore the nth term of the sequence is
3n? +8

(We can check that this formula holds by plugging the values forn =4 andn =5)

Question 4

s, 11, 21, 35, 53,

Find the nth term of this sequence. [2]
Therefore the nth term of the sequence is

2n? + 3
(We can check that this formula holds by plugging the values forn =4 andn =5)
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These are the first five terms of a sequence.

Question 5

13 8 3 -2 -7
Find the nth term of this sequence. [2]

18 — dn

Question 6

32 25 18 11 4

These are the first 5 terms of a sequence.
Find
(a) the 6th term, [1]

—3

(b) the nthterm,

(2]

(¢) which term is equal to —332.

—Tn + 39 = —-332 [2]
— —Tn = —3T71
—n=>53
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Question 7 EXAM PAPERS PRACTICE
The first five terms of a sequence are shown below.
13 9 5 1 =3
Find the nth term of this sequence. (2]

Position: 1 2 3 4 5

Term:13 9 5 1-3

In this case, to get from one term to the other we subtract 4.

We observe that the rule for getting from each position to its corresponding term is:17 — 4 x position
For position n, the term is therefore: 17 — 4n

The nth term of the sequence is: 17 — 4n

Question 8

A sequence is given by  u = \ﬁ, U= \/5, u= JE, us= ﬁ,

(a) Find a formula for u,, the nth term. (2]
m=v2x1-1=+v1
=42 x2—-1=+/3
g =2x3—1= ’\/_5-

By looking at the terms above we deduce the following nth term:

(b) Find Up9. [1]

We substiute n = 29 in the nth term above to work out uyg.

Up =+v2x20—1=+57T~T755

For more help, please visit our website www.exampaperspractice.co.uk



Question 9

E Page 5

EXAM PAPERS PRACTICE

(a) The formula for the nth term of the sequence

(b)

a(n+1)2n+1)

6
Find the 20th term. [1]

1, 5, 14, 30, 55, 91, ...

The given formula for the nth term of the sequence is u,, = W—H_Uézn—“}.
To find the 20 th term (us), substitute n = 20 into the formula:

_ 20(2041)(22041)
U20 6

Now, simplify the expression:

_ 202141

Usgp — ~ 8

Cancel out common factors (divide both the numerator and denominator by 2):
— 10:2141

Unp = 35

Now, calculate the product in the numerator:

ugy = 210

Finally, simplify the fraction:

ugg = 2870.

So, the 20 th term of the given sequence is 2870 .

The nth term of the sequence 10, 17,26, 37, 50, ... is(n+2)1 1.

Write down the formula for the nth term of the sequence 17, 26, 37, 50, 65, ... [1]

(n+1)+2)* +1
=(n+3)2+1
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Question 10 EXAM PAPERS PRACTICE
For each of the following sequences, write down the next term.
(2)2,3,5,8,13, ... (1]
Answer

The next term in the sequence is 21.

The sequence is the Fibonacci sequence.

6 5 4 3
() x, 6x, 30x,120x, ... [1]

We notice the following pattern:

6zt 5
—= = bz

5]
5:!:2."!.‘ :30$4

—msf:ﬁ — 1202*

312023
@

= 3602

(1]
(0) 2,6,18, 54, 162, ...

The given sequence is a geometric sequence where each term is obtained by multiplying the previous
term by a constant factor. In this case, the common ratio (constant factor) is 3.

To find the next term, multiply the last term by the common ratio:

162 x 3 =486.
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Question 11 EXAM PAPERS PRACTICE
For the sequence 5 ; , 7, 8 %, 10, 111,
(a) find an expression for the nth term, [2]

We notice that every term is formed by adding 1% to the previous term.
Following this rule, the first term is formed by adding: 4 + 1%

The second one is formed by adding: 4 + 1% X 2
The nth term will be
441 %n

(b) work out the 100thterm. 1]

The 100" term will be: 4 + 14 x 100 = 4 + 1005
=154

Question 12

Write down the next term in each of the following sequences.

(@ 82, 62, 42, 22, 02,.. [1]

In this sequence, each term is 2 less than the term before it. Thus, the next term is 0.2 — 2 = -1.8.

®) 1, 3, 6, 10, 15, .. [1]

The next term in the sequence is 21.
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+ A pattern of numbers is shown below.

Question 13

Write down the value of x. [1]

In the pattern, we notice that a number is the sum of the 2 numbers immediately above it.
For example,3=2+1

4=3+1

10 = 4 + 6 etc.

Therefore, z =10+ 5 =156

xr =15
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8, 15, 22, 29, 36, ...

A sequence of numbers is shown above.

(a) Find the 10th term of the sequence. [1]
This is an arithmetic sequence with a common difference of 7 . The first term is 8 , so the 10 th term is equalto 8 + 9 -7 = 71.

(b) Find the nth term of the sequence.

To express the nth term (a,,) in terms of n, we can use the formula for the nth term of an arithmetic sequence:
a, = a1+ (n—1)d,

where:

- @y, is the nth term,

- ay is the first term,

- n is the term number, and [1]
- d is the common difference.

In this sequence:

- a1 = 8 (the first term),

- d = 7 (the common difference).

Now, substitute these values into the formula:

ap =8+ (n—1)-7

Simplify the expression:

anp =84+Tn—T.

Combine like terms:

a, =T+ 1.

So, the nth term of the given sequence is a,, = Tn + 1.

(1]

(c) Which term of the sequence is equal to 260?

Answer

We can find the answer by substituting different values of n in the formula from part 1. For the $n$th term to
be equal to 260, we need to find the value of n such that 8+7(n-1)=260. Solving this equation, we get n=37.
Therefore, the 37th term of the sequence is equal to 260.
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We can find the answer by substituting different values of n in the formula from part 1. For the $n$th term to 
be equal to 260, we need to find the value of n such that 8+7(n-1)=260. Solving this equation, we get n=37. 
Therefore, the 37th term of the sequence is equal to 260.


Question 15 EXAM PAPERS PRACTICE
The first five terms of a sequence are 4, 9, 16, 25, 36, ...
Find
(a) the 10thterm, [1]

10 term = (14 10)2 =121

(b) the nthterm. [1]

Nth term = (1 + n)?
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Question 16 E J

\ 4 4 4 4
EXAM PAPERS PRACTI
L \ 4 \ 4 \ J & \ 4 \ 4  J
or—o—¢ ¢ \ 4 4 [ 4 \ 4 4 . 4 4
r—o—o [ 4 4 ® o L 4 \ 4 \ 4 \ J
oo o \ 4 4 Q [ \ 4 \ 4 \ 4 \ 4
oo [ & L ® [ 4 @ @ L4 ®
Diagram 1 Diagram 2 Diagram 3 Diagram 4
The first four Diagrams in a sequence are shown above.
Each Diagram is made from dots and one centimetre lines.
The area of each small square is 1 cm?
(a) Complete the table for Diagrams 5 and 6.
Diagram 1 2 3 4 5 6
2
Area (cm ) 2 6 12 20 | 10 | 18
Number of dots 6 12 |20 | 30 | 12 | 18
Number of one centimetre lines 7 17 31 49 17 31

(b) The area of Diagram n is n(n + 1)cm?.

(i) Find the area of Diagram 50. [1]

n(n + 1) = 50(50 + 1) = 2550 em?
Therefore, the answer is 2550 .

(i1) Which Diagram has an area of 930 cm ?

The area of each small square in the diagrams is 1 cm2, so we can co%mt the number of squares in each diagram to find its htda.

Diagram 1: 2 squares

Diagram 2: 6 squares

Diagram 3: 12 squares

Diagram 4: 20 squares

We can see that Diagram 3 has an area of 12 cm2, and Diagram 4 has an area of 20 cm2. So, the area of Diagram 30 is 30(30 + 1) = 930 cm2.
Therefore, the diagram with an area of 930 cm2 is Diagram 30 .

(¢) Find, in terms of n, the number of dots in Diagram 7. [

To do this, we can first find the number of dots in the first few diagrams.
Diagram 1 has 6 dots.

Diagram 2 has 12 dots, which is 6 more dots than Diagram 1.

Diagram 3 has 20 dots, which is 8 more dots than Diagram 2.

Diagram 4 has 30 dots, which is 10 more dots than Diagram 3.

‘We can see that the number of dots in each diagram increases by 2 more dots than the previous diagram. This means that the number of dots in Diagram n is given by the arithmetic sequence6, 8, 10,. ..

The general form of an arithmetic sequence is a1 + d(n — 1), where a; is the first term, d is the common difference, and 7 is the term number. In this case, a; = 6 and d = 2.
Therefore, the number of dots in Diagram n is given by the following expression:

6+2(n—1)

This can also be written as:

2n+4

Therefore, the answer is 2n + 4.
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(d) The number of one centimetre lines in Diagram n is  2n° + pn+1.

(i) Show thatp=4. [2]
To show that p = 4, we can use the fact that the number of one centimetre lines in Diagram 1is 7 . This is because Diagram 1 has 4 horizontal lines and 3 vertical lines.
Substituting n = 1 into the given formula, we get:
2.124p-14+41=T7
Simplifying, we get:
p+3=T7
Subtracting 3 from both sides, we get:
p=4
Therefore, we have shown that p = 4.

(i) Find the number of one centimetre lines in Diagram 10. [1]

From the formula, we have that the number of one centimetre lines in Diagram 10 is 2 - 102 + p.10 + 1 = 200 + 10p + 1 = 201 + 10p.
‘We can find the value of p by looking at the table for Diagram 4 . The table tells us that there are 49 one centimetre lines in Diagram 4 . Substituting this into the formula, we get 2 - 42 + p - 4 + 1 = 49, which simplifies to 33 = p.
Therefore, the number of one centimetre lines in Diagram 10 is 201 + 10 - 33 = 531.

(iii)) Which Diagram has 337 one centimetre lines? [3]

To find which diagram has 337 one centimeter lines, we need to solve the equation 2r” + pn + 1 = 337.
First, we can subtract 1 from both sides to get 2r* + pn = 336. We can then divide both sides by 2 to get n? + &n = 168.

Next, we can complete the square by taking half of the coefficient of our n term, squaring it, and adding it to both sides of the equation. The coefficient of our n term is %, s0 half of it would be %. Squaring this gives us f—;.
Therefore, we can add % to both sides of the equation to get n* + £n + % =168 + %. This can be rewritten as (n + %)2 =(2+ %)24

Taking the square root of both sides givesus n + £ = + (2 + £). Subtracting £ from both sides givesusn = +22 + Z,

Since n must be an integer, the only possible solution is 7 = 6. This means that the sixth diagram has 337 one centimeter lines.

Answer: Diagram 6

. 2. .
(e) For each Diagram, the number of squares of area 1 cm is 4, the number of dots is D and the
number of one centimetre lines is L.

Find a connection between A4, D and L that is true for each Diagram. [1]
D=24A-1
and
L=A-1

Substituting the value of I from the second equation into the first equation, we get:
D=2A-1=2(A-1)+1=L+1

Therefore, the connection between A, D, and L that is true for each Diagram is:
D=L+1
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The diagrams show some polygons and their diagonals.

(a) Complete the table.
Number of sides Name of polygon Total number of diagonals
3 triangle 0
4 quadrilateral 2
5 pentagon 5
6 hexagon 9
7 heptagon 14
8 octagon 20

(b) Write down the total number of diagonals in

(i) adecagon (a 10-sided polygon), [1]

The total number of diagonals in a decagon is 35.

(1) a 12-sided polygon. [1]

The total number of diagonals in a 12-sided polygon is 54.
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(c) A polygon with 7 sides has a total of ln (n —q ) diagonals, where p and ¢ are integers.
p

(i) Find the values of p and g. [3]

1
the values of p and g in the formula ;T‘L(ﬂ. —q)arep=1andg=4.

(i) Find the total number of diagonals in a polygon with 100 sides. [1]

The formula %n(n — g) gives us the number of diagonals in a polygon with n sides if p = 2 andg = 3. Therefore, a polygon with 100 sides has a total of % - 100 - (100 — 3) = 4850 diagonals.
n(n—3) 100(100—3)
z 2

‘We can check this answer by using the formula we derived earlier: . Plugging in n. = 100, we get = 4850. Therefore, both formulas give us the same answer.

The image shows a polygon with 100 sides and 4850 diagonals.

(iii) Find the number of sides of a polygon which has a total of 170 diagonals. [2]

the number of sides of a polygon which has a total of 170 diagonals is 20.

(d) A polygon with n + 1 sides has 30 more diagonals than a polygon with nsides.

Find n. (1]

Let’s call the polygon with n sides P, and the polygon with n + 1 sides P, ;1. We know that P, ; has 30 more diagonals than P,, so we can write the following equation:
n_d(P.{n+1})=n_d(P-n)+30

where ng (P,,) is the number of diagonals in polygon P,.

‘We can use the formula for the number of diagonals in a polygon to rewrite the equation as follows:
(n+1)(n)/2 =n(n—3)/2+30

Multiplying both sides of the equation by 2 , we get:

(n+1)n=mn(n—3)+60

Expanding the right side of the equation, we get:

(n+1)n=n"2-3n+60

Subtracting n® — 3n from both sides of the equation, we get:

n+1=460

Subtracting 1 from both sides of the equation, we get:

n =59

Therefore, the polygon with n sides has 59 sides.

Answer: 59

For more help, please visit our website www.exampaperspractice.co.uk



Page 15
Question 18 E J

EXAM PAPERS PRACTICE .

] ° °
° ° ° ° . [
° ° ° ° ° ° ° ° ° °
Diagram 1 Diagram 2 Diagram 3 Diagram 4

The first four terms in a sequence are 1, 3, 6 and 10.
They are shown by the number of dots in the four diagrams above.

(a) Write down the next four terms in the sequence. [2]

the next four terms in the sequence are 15, 21, 28, and 36.

(b) () The sum of the two consecutive terms 3 and 6 is 9. The
sum of the two consecutive terms 6 and 10 is 16.

Complete the following statements using different pairs of terms.

The sum of the two consecutive terms 15 and 21 is 36

...................... (1]

Gi) What special name is given to these sums? 4
partial sums

. . . +1
() () The formula for the nth term in the sequence 1, 3, 6, 10... is n(n+1)

where kis an integer.  Find the value of &.

the value of k is 2.
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(i) Test your formula when n = 4, showing your working. [1]

To test the formula when n = 4, we can simply plug in n = 4 into the formula and evaluate:
Number of diagonals = 4(4 — 3)/2 =4(1)/2=4/2=2

This matches the number of diagonals shown in the diagram for n = 4, which is 2 .
Therefore, the formula for the number of diagonals in a polygon is correct.

(1]
(iii) Find the value of the 180th term in the sequence.
Answer: 16200
2
(d) () Show clearly that the sum of the nth and the (n + 1)th terms is (n + 1). (3]

To show that the sum of the $n$ th and the §(n + 1)§ th terms is (n + 1)?, we can use the following steps:

1. Let the $n8 th term be T}, and the $(n + 1)$ th term be T},;.

2. We know that the sum of two consecutive terms in an arithmetic progression is equal to the average of those two terms. Therefore, we can write the following equation:
Tn+T {n+1} =T n+T {n+1})/2

3. Multiplying both sides of the equation by 2 , we get:

2T n+2T {n+1} =T n+T {n+1}

4. Subtracting T}, + T}, 41 from both sides of the equation, we get:

Tn=T{n+1}

5. This means that the $n$ th and $(n + 1)$ th terms are equal. Therefore, the sum of the $n$ th and $(n + 1)$ th terms is equal to twice the $n$ th term:

Sum of $n$ th and $(n + 1)§ th terms = $27_n$

6. We also know that the $n$ th term is equal to (r)(n + L), since the sequence is an arithmetic progression with a common difference of 1 . Therefore, we can substitute (n)(n + 1) for T, in the above equation:
Sum of $n$ th and $(n + 1)$ th terms = $2(n)(n + 1)$

7. Simplifying the right side of the equation, we get:

Sum of $n$ th and $(n + 1)$ th terms = §(2n"2 + 2n) = (n + 1)"2

Therefore, we have shown that the sum of the $n§ th and the $(n + 1)$ th terms is (n + 1)°.

(i) Find the values of the two consecutive terms which have a sum of 3481. [2]

If the two consecutive terms are @ and a + 1, then we have:a + (a + 1) = 34812a + 1 = 34812a = 3480a = 1740
Therefore, the two consecutive terms are 1740 and 1741.
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1 2 3 4 5 6

7 8 9 10 | 11 | 12

13| 14 | 15 | 16 | 17 | 18

19 | 20 | 21 | 22 | 23 | 24

25 | 26 | 27 | 28 | 29 | 30

31 | 32 | 33 | 34 | 35 | 36

A 3 by 3 square X b ¢ can be chosen from the 6 by 6 grid above.
d e f
g h i
(a) One of these squares is 8 0 8
14 15 16
20 21 22

In this square, x =8, ¢ =10, g =20 and i =22.

For this square, calculate the value of

@ G—x)—(g— o), 4 (1]
(i) cg—xi. 924 [1]
(b)
x | b | ¢
d | e | f
g | h | i
@) c=x+2. Write down gand i interms of . ¢ + 12, 4 14 0.e. 2]

(i) Use your answers to part(b)@) to show that (i — x) — (g — ¢) is constant.
(z+14 —z)and (z + 12 — (z + 2))

] . 14 —100r14 — 12+ 2o0r 4
(ii) Use your answers to part(b)@ to show that cg — xi is constant. [2]

(2 +2)(z+ 12) — z(z + 14)
24
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(c) The 6 by 6 grid is replaced by a 5 by 5 grid as shown.

1 2 3 4 5

6 7 8 9 10

11 | 12 | 13 | 14 | 15

16 | 17 | 18 | 19 | 20

21 | 22 | 23 | 24 | 25

A 3 by 3 square X b | can be chosen from the 5 by 5 grid.
d e f
g h i

For any 3 by 3 square chosen from this 5 by 5 grid, calculate the value of
DiE-v-@g-o. 4 [1]
(1) cg — xi. 20

(d) A 3 by 3 square is chosen from an n by n grid.

(i) Write down the value of (i —x) = (g — ¢). [1]
4
(i) Find g and i in terms of x andn. 2]

z+2n oe,x+2+2n o.e.

(iii) Find cg — xi in its simplest form. [1]

4n
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The table shows some terms of several sequences.

Term 1 2 3 4 8
Sequence P 7 5 3 1 P
Sequence Q 1 8 | 27 | 64 q
1 2 3 4
Sequence R 3 3 i 3 r
Sequence S 4 9 16 | 25 s
Sequence T 1 3 9 | 27 t
Sequence U 3 6 7 | 2 u
(a) Find the values of p, g, 7, s, t and u. [6]
p=39q=64r=9s=25t=27u=>5
(b) Find the nth term of sequence 7_9 (n B 1)
@ P, (1]
i Q [1]
(i) R, (1]
) S, [1]
W T, (1]
) U [1]
(¢) Which term in sequence P is equal to —777? [2]

The 388 th term in sequence P is equal to — 777.

(d) Which term in sequence T is equal to 177 147? [2]
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®
Diagram 1 Diagram 2 i Diagram 3
The first three diagrams in a sequence are shown above.
The diagrams are made up of dots and lines. Each line is one centimetre long.
(a) Make a sketch of the next diagram in the sequence.
The first diagram is a square with the side 1 unit
the second diagram has the side 2 units
the third one has the side 3 units
The next unit will be a square with 4 units side.
(b) The table below shows some information about the diagrams.
Diagram 1213 ] 4/|-—-—-- n
Area 1{4]|9|16]| - X
Number of dots 419 (16| p | - y
Number of one centimetre lines 4112124 q | - z
(i) Write down the values of p and q.
Looking at the diagrams we work out p = 25 and g = 40
(i) Write down each of x, y and z in terms ofn
x =n’ y=(n+1)> z=n’+(n+1)?-1

(¢) The total number of one centimetre lines in the first # diagrams is given by the expression

2 3 2
§n+fn+gn.

() Use n =1 in this expression to show that frg= %
10
tg= "
fro=-3
. o . 32
(i) Use n =2 in this expression to show that 4 +2g=%"
32
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(ii) Find the values of fand g.

1
f=2 _2
973

(iv) Find the total number of one centimetre lines in the first 10 diagrams.

We substitute in the expression f = 2,n = 10 and g = 4/3.
210° +2x 10 + 10 x 3
= 880
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