
GCSE OCR Math J560

Sequence Quadratic

Answers

"We will help you to achieve A Star"

(a) Find, in terms of n, an expression for the nth term of this sequence.

So
$$5 \times 1 + k = 4$$

$$R = -1$$

$$R = -1$$

$$R = -1$$

Here are the first 5 terms of a quadratic sequence.

1 3 7 13 21

Find an expression, in terms of n, for the nth term of this quadratic sequence.

1 _ 3	7	13	21
			A
2	4	6	2
2	2	2	
// 3	= '/		

$$3 + 6 = 2$$
 -3
 $6 = -1$

$$n^m Term = n^2 - n + 1$$

(b) The 3rd term of this sequence is 21 and the 6th term is 96.

Find the value of a and the value of b. You must show all your working.

$$n=6$$
: G^{TH} Term = $a \times 6^2 + b \times 6$

$$= 36a + 6b$$

$$(2)-(3)$$
 $(18a)$ = 54

The *n*th term of a number sequence is $n^2 + 1$

Write down the first three terms of the sequence.

Here are the first five terms of a different sequence.

An expression for the *n*th term of this sequence is $3n - n^2$ (b) Write down, in terms of *n*, an expression for the *n*th term of a sequence whose first

$$n^{tn} TERM = \left(3n-n^2\right) \times 2$$

$$= 2\left(3n-n^2\right)$$

Answer 6

The *n*th term of a sequence is $an^2 + bn$.

(a) Write down an expression, in terms of a and b, for the 3rd term.

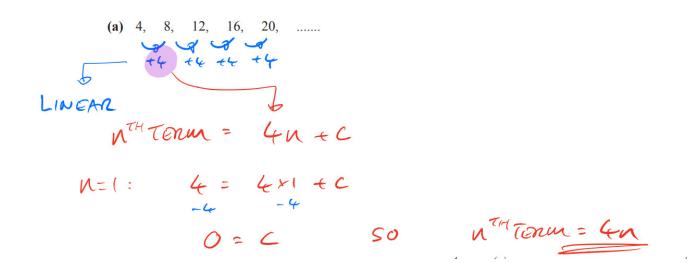
$$N=3: 3^{RD} TERM = 0 \times 3^{2} + 6 \times 3$$

$$= 9a + 36$$

The *n*th term of a sequence is given by $an^2 + bn$ where *a* and *b* are integers.

The 2nd term of the sequence is -2The 4th term of the sequence is 12

(a) Find the 6th term of the sequence.


LINEAR SIMULTANEOUS EQUATIONS

$$(2)-(3)$$
 (3) (3) (4) (4) (4) (5) (4) (5) (4) (5) (5) (5) (6) (7) (8)

$$n=4$$
: $16a + 4b = 12 - 2$
 2×0
 $8a + 4b = -4 - 3$
 $8a + 4b = -4 - 3$
 6^{70} Term = $2 \times 6^2 - 5 \times 6$
 $8 = 72 - 30$
 $a = 2$
 $4 \times 2 + 2b = -2$
 $= 42$

Answer 8

Find the *n*th term of each sequence.

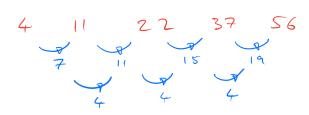
Find the *n*th term of each sequence.

Find the differences between the terms

Common Difference = 6

So:
$$n^{\text{th}}$$
 Term = $6n + c$

Use 1st term to find
$$c$$
: $7 = 6 \times 1 + c$

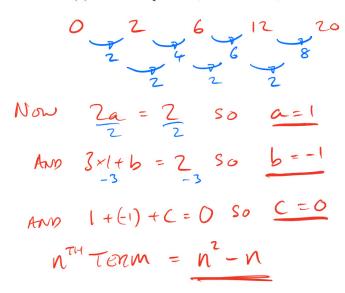

$$c = 1$$

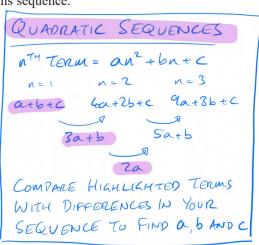
So:
$$n^{\text{th}} \operatorname{Term} = 6n + 1$$

Answer 10

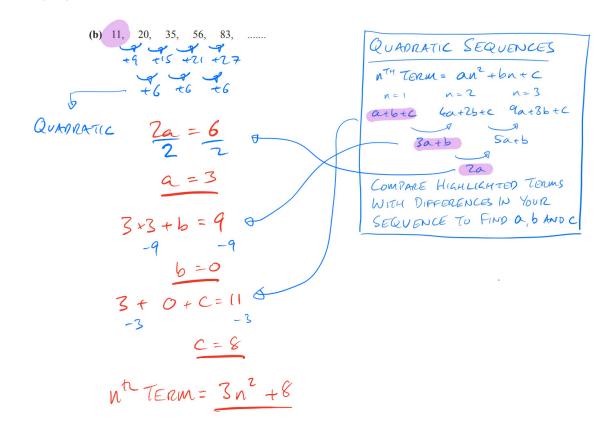
Here are the first five terms of a sequence.

Find an expression, in terms of n, for the nth term of this sequence.





Here are the first five terms of a different quadratic sequence.


0 2 6 12

(b) Find an expression, in terms of n, for the nth term of this sequence.

Answer 12

(b) 9, 16, 25, 36, 49, ...
$$+7 + 9 + 11 + 13$$
 Find the differences between the terms
$$+2 + 2 + 2$$
 ...and the second differences

The second differences are constant so it is a Quadratic sequence.

Looking at the sequence again notice that the numbers are all square numbers:

n: 1 2 3 4 5

 n^{th} Term: 3^2 4^2 5^2 6^2 7^2

And there is a clear relationship (3 is 2 more than 1, 4 is 2 more than 2 etc.:

$$n^{\text{th}} \operatorname{Term} = (n+2)^2$$