

	Question number	Answer	Notes	Marks
1	(a)	$I_2 + CI_2 \rightarrow 2ICI$	ACCEPT halves and multiples	1
	(b) (i)	M1 rate of forward reaction = rate of backwards reaction	ACCEPT both reactions occur at the same rate IGNORE forward reaction = backwards reaction	2
		M2 concentrations of reactants/ products remain constant	ACCEPT amounts/masses for concentrations ACCEPT don't change/stay for remain IGNORE concentrations/ amounts of reactants and products are the same/are equal ALLOW colour remains constant	
	(ii)	M1 equilibrium has shifted to the left / equilibrium has shifted to the ICI side / equilibrium has shifted to the reactants side OR more ICI has been produced / more reactants have been produced	IGNORE references to Le Chatelier's principle e.g. an increase in temperature favours the endothermic reaction	2
		M2 an increase in temperature shifts the equilibrium in the endothermic direction	ACCEPT 'therefore the (backward) reaction is endothermic' for M2 if M1 has been awarded	

Question number	Answer	Accept	Reject	Marks
2 (a)	 any two from: forward and backward reactions (still) occurring concentrations/amounts of reactants/products/components remain constant rate of forward reaction = rate of reverse reaction IGNORE concentrations/amounts of reactants and products are the same IGNORE reaction is reversible/goes both ways, OWTTE IGNORE references to le Chatelier 	both reactions (still) occurring stay the same in place of remain constant		2
(b) (i) (ii)	 M1 – (increase in temperature) decrease(s) M2 – (increase in pressure) increase(s) M1 – (forward) reaction is exothermic/gives out 	less/low <u>er(</u> s)/drop(s)/gets small <u>er</u> more/raise(s)/high <u>er</u> /gets bigg <u>er</u>		1 1 1
	heat OR <u>reverse</u> reaction is endothermic/takes in heat M2 – fewer (gas) molecules/particles on right hand side OR fewer moles (of gas) on right hand side I GNORE references to volumes I GNORE references to le Chatelier's principle I GNORE references to reverse reaction lowers the temperature I GNORE references to forward reaction reduces the pressure	reverse argument shifts to side with fewer (gas) molecules/fewer moles (of gas)	atoms	1

2 (c) (i)	(the position of) equilibrium is not established/reached			1
(ii)	M1 – (the mixture of gases is) cooled	temperature is decreased		1
(iii)	M2 – ammonia liquefies / condenses recycled / <u>re</u> used / recirculated	put (back) into the reaction chamber used <u>again</u> (in the process)		1
(d)	heat(ing) / energy costs would be higher	yield (of ammonia) would decrease		1
(e) (i)	M1 $M_r (N_2) = 28$	28 anywhere in the calculation		1
	M2 112 000 ÷ 28 (= 4 000) / 112 000 ÷ M1			1
	M3 8 000 / M2 x 2	112 ÷ 28) 2 = 8 for 2 marks		1
		(112 000 ÷ 14) x 2 = 16 000 for 2 marks		
		Correct final answer without working for 3 marks		
(ii)	1 200 / 15% of M3			1
			Total	15

Question number	Answer	Notes	Marks
3 (a)	 M1 (goes darker because) more NO₂ is formed M2 as equilibrium/reaction shifts to left M3 because there are more moles/molecules (of gas) on the left hand side 	allow 'moves backwards/in reverse direction' accept 'fewer moles/molecules on the right hand side' ignore references to Le Chatelier's principle	3
(b) (i)	M1 the equilibrium/reaction has shifted to the right / more N ₂ O ₄ has been formed M2 a decrease in temperature shifts the equilibrium in the exothermic direction	accept 'therefore the (forward) reaction is exothermic' for M2 if M1 has been awarded	2
(ii)	(yes: because) bond making is exothermic/releases (thermal/heat) energy		1

Question number	Answer	Accept	Reject	Marks
4 (a)	 Any two from: M1 both forward and backwards reactions are occurring M2 amounts/concentrations of reactants and products stay the same/pressure (of gas mixture) stays the same M3 rate of forward reaction = rate of backwards reaction 	masses for amounts	are the same	2
(b) (i)	 M1 increase M2 (forward) reaction is exothermic/gives out heat M2 dep on M1 IGNORE references to le Chatelier's principle and to reaction tries to decrease the temperature/equilibrium shifts to right 	reverse reaction is endothermic	equilibrium shifts to left	1
(b) ii)	 M1 increase M2 fewer moles/molecules (of gas) on right (hand side) M2 dep on M1 IGNORE references to le Chatelier's principle and to reaction tries to decrease the pressure/equilibrium shifts to right 	more molecules on left (hand side)	equilibrium shifts to left	1

	EXAM PAPERS	PRACTICE		
(c) (i)	$2CH_3OH + O_2 \rightarrow 2H_2CO + 2H_2O$	multiples and halves		2
	M1 formulae			
	M2 balancing			
	M2 dep on M1			
	IGNORE catalyst if on both sides or above arrow			
	IGNORE state symbols			
(ii)	M1 – a substance that increases the rate of a reaction	mass does not		1
	IGNORE alters the rate and any reference to enzymes	change		
	M2 and is chemically unchanged (at the end of the reaction)	without being used up		1
	IGNORE references to takes no part in the reaction			
(iii)	M1 provides an alternative reaction path(way)/route/mechanism			1
	M2 (alternative path has a) lower activation energy [Activation energy can be described, e.g. the minimum energy needed (by colliding particles) for reaction to occur]	M1 molecules adsorb on/stick to the catalyst		1
	MAX 1 if any mention of particles gaining energy	M2 weakens the bonds in the reactant molecules		
(d)	$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$	multiples and halves		2
	M1 all formulae correct	correct equation for		
	M2 balanced	methanal for one mark		
	M2 dep on M1			
	IGNORE state symbols			
			Total	14

Question number	Answer	Notes	Marks
5 a	$CH_4 + H_2O \rightarrow CO + 3H_2$	Accept fractions and multiples	1
b i	M1 (increased pressure) has no effect (on yield)M2 because equal numbers of (gas) moles/molecules on each side	Ignore no effect on other factors eg equilibrium (position) Do not award M2 if M1 is incorrect	2
11	 M1 (at higher temperature equilibrium position shifts to left so yield of hydrogen) decreases M2 because (forward) reaction is exothermic 	Accept because backward reaction is endothermic Accept because reaction moves in the endothermic direction Ignore references to Le Chatelier's principle eg increase in temperature favours the endothermic reaction Do not award M2 if M1 is incorrect	2

c i	,	\uparrow	M1 for CO ₂ + H ₂ / products below CO + H ₂ O	
	energy	CO + H2O	M2 for approximately vertical line/arrow with ΔH symbol/enthalpy change/-41kJ/mol between reactants and products	2
		2.H CO ₁ + H ₂	M2 CQ on M1 unless if products above the activation energy	
ii	no et	ffect / OWTTE		1
iii	M1	provides alternative pathway / route / OWTTE	Accept words such as another / different in place of alternative, but not just route	
	M2	with lower activation energy	Accept lowers the activation energy Accept less energy needed to start the reaction	2
			Reject (catalyst) provides energy for M1 and M2	
			Ignore references to providing surface for reaction	

Question number		Answer	Notes	Marks
5 d	M1	identifying reaction 3 or reaction 4	Ignore reactions 5 and 6	2
	M2	a correct explanation for either eg		2
		in reaction 3, there is gain of hydrogen	Accept increase in oxidation number of H / changes from 0 to (+)1 Accept decrease in oxidation number of N / changes from 0 to -3 Ignore references to gain/loss of electrons	
		in reaction 4, there is gain of oxygen	Accept decrease in oxidation number of O/ changes from 0 to -2 Accept increase in oxidation number of N / changes from -3 to (+)2 Ignore references to gain/loss of electrons	
			Ignore other explanations	
			Allow:	
			Identifying both Reaction 3 and 4 <u>only</u> for 2 marks Ignore any explanations	

e	$M1 n(NH_3) = \frac{34 \times 1000}{17} = 2000 \text{ (mol)}$ $M2 M_r \text{ (NH_4NO_3)} = 80$ $M3 \text{ mass (NH_4NO_3)} = 80 \times 2000 = 160 \text{ 000 g / 160 kg}$ $M3 \text{ mass (NH_4NO_3)} = 80 \times 2000 = 160 \text{ 000 g / 160 kg}$ $D0 \text{ not award M3 if unit missing or incorrect}$ $M1 M_r \text{ (NH_4NO_3)} = 80$ $M2 (so) 17 \text{ (kg NH_3) gives 80 (kg NH_4NO_3)}$ $M3 (so) 34 \text{ (kg NH_3) gives } \frac{80}{17} \times 34 = 160 \text{ kg}$	3

	Question number			Answer	Notes	Marks
6	i a	i	M1	air / atmosphere		1
			M2	water / natural gas / hydrocarbons	Allow methane	1
		ii	M1	iron / Fe	Ignore iron oxide Accept phonetic spellings Do not penalise other included numbers - eg Fe(II) / Fe(III) / Fe ²⁺ / Fe ³⁺	1
		111	M1	450 °C	Accept temperature of 350°C to 550°C or temperatures in K If range given, both values must be within acceptable range	1
			M2	200 atm(ospheres)	Accept pressure of 150 atm to 250 atm or pressures in Pa Unit needed for mark If two conditions given, both must be correct	
		iv	M1 M2	cooled / temperature lowered ammonia liquefies / condenses	M1 and M2 are independent Do not award M2 if implication that other gases condense	1 1

For more help please visit our website www.exampaperspractice.co.uk

	Question number			Answer	Notes	Marks
6	b		M1	$n(N_2) = (56 \times 10^6) \div 28 / 2 \times 10^6$	No penalty for missing or incorrect power of 10	1
			M2	$n(NH_3) = M1 \times 2 / 4 \times 10^6$	Conseq on M1	1
			М3	$m(NH_3) = M2 \times 17 / 68 t(onnes)$	Conseq on M2	1
					Correct final answer with units scores 3	
					Accept answers in grams and kilograms 34 t scores 2 marks	
					Final answer of 68 with missing or	
					incorrect units scores 2	
				OR	M1 for 28 and 34 (need not be in this	
				34×56	expression)	
				28 = 68 t(onnes)	M2 is for expression shown M3 is for answer with units	
	С	(i)	M1	increased		1
			M2	shift to left	Allow less ammonia / products	1
					Allow moves in reverse direction	
		(ii)	M1	shift to right	Ignore reference to favouring Allow more ammonia / products	1
		(1)			Allow moves in forward direction	I
					Ignore reference to favouring	
			M2	fewer moles/molecules (of gas) on the right	Allow more moles/molecules on the left	1
					Do not penalise incorrect numbers, eg	
					3 moles on the left and 2 moles on the	
					right	
					Ignore references to rate M2 dependent on M1	

Question number			Answer	Notes	Marks	
6	d	i	M1	60		1
		II	M1	setting out correct division of each % by A _r OR 2.5, 5 and 3.75	Award 0 for whole question if division by atomic numbers / wrong way up / multiplication used If molecular masses used for all three elements, no M1, but can award M2 and M3	1
			M2	division by smallest (gives 1 : 2 : 1.5)	No penalty for subsequently rounding 1.5 to 2 if clear they have divided by smallest	1
			M3	$N_2H_4O_3$	Accept elements in any order Allow NH₄NO₃ If % O wrong or missing, only M1 and M2 can score	1
		III	M1	ammonium nitrate	Accept phonetic spellings Do not accept ammonia in place of ammonium Do not accept nitrite or nitride in place of nitrate Ignore all formulae	1

Total 18 marks

For more help please visit our website www.exampaperspractice.co.uk