Respiration

These practice questions can be used by students and teachers and is suitable for GCSE AQA Biology topic Questions 8641

Level: GCSE AQA Biology 8641
Subject: Biology
Exam board: GCSE AQA

Topic: Respiration

For more help, please our website www.exampaperspractice.co.uk

Q1.

Aphids are small insects that carry pathogens.
Figure 1 shows an aphid feeding from a plant stem.
Figure 1

(a) An aphid feeds by inserting its sharp mouthpiece into the stem of a plant.

After feeding, the mouthpiece of an aphid contains a high concentration of dissolved sugars.

Which part of the plant was the aphid feeding from?
Tick one box.

Palisade layer \square

Phloem \square

Stomata

Xylem

(b) What is the process that transports dissolved sugars around a plant?

Tick one box.

Filtration

Respiration

Translocation

Transpiration \square
(c) Plants infected with aphids have stunted growth.

Explain one way the removal of dissolved sugars from the stem of the plant causes stunted growth.
\qquad
(d) Most aphids do not have wings when they hatch. After several generations, some aphids hatch which have wings and can fly.

Explain the advantage to the aphid of being able to fly.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(e) The leaves of some plants release oils onto their surface.

Suggest how the production of oil on the surface of a leaf may protect the plant from aphids.
\qquad
\qquad
\qquad
\qquad

Figure $\mathbf{2}$ shows part of a rose plant.
Figure 2

(f) Give one adaptation shown in Figure 2 that helps the rose plant defend itself.
\qquad
\qquad
\qquad
\qquad

Figure 3 shows a plan of a garden containing rose plants.
Figure 3

For more help, please our website www.exampaperspractice.co.uk

(g) Plant \mathbf{A} has the fungal disease rose black spot.

Which plant in Figure 3 is the fungus likely to spread to first?
Give a reason for your answer.
Plant \qquad
Reason
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(h) Suggest one way the gardener could reduce the spread of rose black spot to the other plants in the garden.
\qquad
\qquad
\qquad
\qquad

Q2.
Earthworms are small animals that live in soil. Earthworms have no specialised gas

For more help, please our website www.exampaperspractice.co.uk
exchange system and absorb oxygen through their skin.
(a) What is the name of the process in which oxygen enters the skin cells?

Tick one box.

Active transport \square

Diffusion

Osmosis

Respiration \square

The table below shows information about four skin cells of an earthworm.

Cell	Percentage of oxygen	
	Outside cell	Inside cell
A	9	8
B	12	8
C	12	10
D	8	12

(b) Which cell has the smallest difference in percentage of oxygen between the outside and the inside of the cell?

Tick one box.

(c) Which cell will oxygen move into the fastest?

Tick one box.

For more help, please our website www.exampaperspractice.co.uk
(d) Earthworms have a large surface area to volume ratio.

Suggest why a large surface area to volume ratio is an advantage to an earthworm.
\qquad
\qquad
\qquad
-
(e) The earthworm uses enzymes to digest dead plants.

Many plants contain fats or oils.
Which type of enzyme would digest fats?
\qquad
\qquad
\qquad
\qquad
(f) Earthworms move through the soil.

This movement brings air into the soil.
Dead plants decay faster in soil containing earthworms compared with soil containing no earthworms.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -

For more help, please our website www.exampaperspractice.co.uk
-
(g) When earthworms reproduce, a sperm cell from one earthworm fuses with an egg cell from a different earthworm.

Name the process when an egg cell and a sperm cell fuse.
\qquad
(h) Some types of worm reproduce by a process called fragmentation.

In fragmentation, the worm separates into two or more parts. Each part grows into a new worm.

What type of reproduction is fragmentation?
\qquad
\qquad

Q3.
Metabolism is the sum of all the chemical reactions in the cells of the body.
One metabolic reaction is the formation of lipids.
(a) Give one other metabolic reaction in cells.
\qquad
\qquad
\qquad
\qquad

Table 1 shows the mean metabolic rate of humans of different ages.

Table 1

Age in years	Mean metabolic rate in $\mathbf{k J} / \mathbf{m}^{2} /$ hour	
	Males	Females
5	53	53

For more help, please our website www.exampaperspractice.co.uk

15	45	42
25	39	35
35	37	35
45	36	35

(b) What two conclusions can be made from the data in Table 1?

Tick two boxes.

As age increases, mean metabolic rate of males and females increases.

Males have a higher metabolic rate than females after five years of age.

The mean metabolic rate of females decreases faster than males up to 25 years of age.

The mean metabolic rate of males and females decreases more quickly after the age of 35 .

There is no relationship between age and mean metabolic rate.

(c) Calculate the percentage decrease in the mean metabolic rate of males between 5 years and 45 years of age.

Use the equation:

$$
\text { percentage decrease }=\frac{\text { decrease in metabolic rate }}{\text { original metabolic rate }} \times 100
$$

Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Percentage decrease = \qquad

Regular exercise can increase metabolic rate.
Two people did five minutes of gentle exercise from rest.
Table 2 shows the effect of the exercise on their heart rates.
Table 2

Time in minutes	Heart rate in beats per minute	
	Person R	Person S
0 (at rest)	60	78
1	76	100
2	85	110
3	91	119
4	99	129
5	99	132

(d) Describe two differences in the response of person \mathbf{R} and person \mathbf{S} to the exercise.

Use information from Table 2.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(e) Complete the line graph below for person \mathbf{S}.

You should:

For more help, please our website www.exampaperspractice.co.uk

- add the scale to the x axis
- label the x axis.

(f) After five minutes of exercise, the heart rate of person \mathbf{S} was 132 beats per minute. When person \mathbf{S} rested, his heart rate decreased steadily at a rate of 12 beats every minute.

Calculate how much time it would take the heart rate of person \mathbf{S} to return to its resting rate.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

$$
\text { Time }=\ldots \text { minutes }
$$

(g) A student made the following hypothesis about the heart rate of smokers and non-smokers during exercise.
"During exercise, the heart rate of smokers increases more than the heart rate of non-smokers."

Design an investigation that would allow you to test this hypothesis.
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad

Q4.
Mycoprotein is a protein-rich food.
Mycoprotein is made from the fungus Fusarium.
The diagram below shows a fermenter used for growing Fusarium.

(a) Explain why the fermenter is sterilised before use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Cold water is pumped through the cooling coil at point \mathbf{X}.

This maintains a constant temperature inside the fermenter.
Suggest the temperature at which Fusarium grows fastest.
Tick one box.

For more help, please our website www.exampaperspractice.co.uk

(c) Glucose and bubbles of air enter the fermenter.

The bubbles of air supply oxygen.
Explain why Fusarium needs glucose and oxygen.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -
(d) The bubbles of air also move materials around the fermenter.

Suggest why it is useful for bubbles of air and materials to move around inside the fermenter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) 100 grams of chicken meat contains 22 grams of protein.

100 grams of mycoprotein contains 11 grams of protein.
A man ate 100 grams of chicken in one meal.
How many grams of mycoprotein would the man need to eat to get the same mass of protein as in 100 grams of chicken?

Tick one box.

Q5.
It is important to maintain water balance in the body.
The graphs below show how much water a person gained and lost by different methods in one day.

When water is balanced, the volume of water taken in by the body is equal to the volume of water lost from the body.
(a) Calculate the volume of water the person lost in one day in faeces.

Use information from the graphs above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Volume lost in faeces = \qquad cm^{3}
(b) The graphs above show that one method of gaining water is by metabolism.

Which metabolic process produces water?
Tick one box.

Breakdown of protein to amino acids

Changing glycogen into glucose \square

Digestion of fat

Respiration of glucose \square

The next day, the person ran a 10-kilometre race.
The volume of water lost from the body through the skin and by breathing increased.
(c) Explain why more water was lost through the skin during the race.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Explain why more water was lost by breathing during the race.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
Figure 1 shows:

- a food chain for organisms in a river
- the biomass of the organisms at each trophic level.

Figure 1

$\begin{array}{lllll}\text { Biomass in } \mathrm{g} / \mathrm{m}^{2}: & 840 & 200 & 40 & 10\end{array}$
(a) Draw a pyramid of biomass for the food chain in Figure 1 on Figure 2.

You should:

- use a suitable scale
- label the x-axis
- label each trophic level.

Figure 2

(b) Calculate the percentage of the biomass lost between the algae and the large fish.

Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage loss = \qquad
(c) Give one way that biomass is lost between trophic levels.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
(d) A large amount of untreated sewage entered the river. Many fish died.

Untreated sewage contains organic matter and bacteria.
Explain why many fish died.
\qquad
\qquad
\qquad
\qquad
\qquad -
\qquad -
\qquad -
\qquad
\qquad -

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7.
Glucose is broken down in respiration.
(a) What is the chemical formula for glucose?

Tick one box.
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$ \square

The diagram shows the apparatus a student used to investigate aerobic respiration.

Limewater goes cloudy when carbon dioxide is added to it.

For more help, please our website www.exampaperspractice.co.uk
(b) After 10 minutes the limewater in flask \mathbf{B} was cloudy, but the limewater in flask A remained colourless.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Flask \mathbf{A} acts as a control in this investigation.

What is the purpose of a control?
\qquad
\qquad
\qquad
\qquad
(d) The student repeated the investigation with no woodlice.

Describe the appearance of the limewater in flask A and flask B after 10 minutes.

Flask A

\qquad
\qquad

Flask B
\qquad
\qquad
\qquad

Anaerobic respiration is another form of respiration in living organisms.
(e) What is produced during anaerobic respiration in humans?

Tick one box.

(f) Complete the equation for anaerobic respiration in yeast.
glucose $\rightarrow \quad$ carbon dioxide $\quad+$

Q8.
The image below shows part of a root from a cress plant.

(a) What type of microscope was used to create the image above?
\qquad
\qquad
(b) The magnification of the cress root in the image above is $\times 200$.

There are 1000 micrometres $(\mu \mathrm{m})$ in a millimetre (mm).
Calculate the real length of the root hair, \mathbf{X}.
Give your answer in micrometres $(\mu \mathrm{m})$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Real length } \mathbf{X}=
$$

\qquad $\mu \mathrm{m}$
(c) Root hair cells take up water from the soil.

Explain one way in which the root hair cell is adapted to this function.
\qquad -
\qquad -
\qquad -
\qquad
\qquad

The table shows the water uptake by a plant's roots on two different days.

	Mean water uptake in $\mathbf{~ c m}^{\mathbf{3}}$ per hour
Cold day	1.8
Hot day	3.4

(d) Explain why the mean rate of water uptake is higher on a hot day than on a cold day.
\qquad
(e) The concentration of mineral ions in the soil is lower than in root hair cells.

Root hair cells take up mineral ions from the soil.
Root hair cells contain mitochondria.
Explain why root hair cells contain mitochondria.
\qquad
-
\qquad
-
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q9.
Stem cells can be used to treat some diseases.
(a) What is a stem cell?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 1 shows a malignant tumour in the trachea of a patient.

Figure 1

(b) Give one way a malignant tumour differs from a benign tumour.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Scientists can treat the patient's tumour by replacing the trachea with a plastic trachea.

The plastic trachea has a layer of the patient's own stem cells covering it.
Figure 2 shows the procedure.

Figure 2

(c) In Step 3 the cells are left for 48 hours to divide.

Name the type of cell division in Step 3.

For more help, please our website www.exampaperspractice.co.uk
(d) In Step 3 the cells are given oxygen and water.

Name two other substances the cells need so they can grow and divide.
1.
\qquad
\qquad
2.
\qquad
\qquad
(e) Give two advantages of using the stem cell trachea compared with a trachea from a dead human donor.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(f) Sometimes the stem cell trachea is not strong enough.

Doctors can put a stent into the trachea.
Suggest how a stent in the trachea helps to keep the patient alive.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
(g) Stem cells can also be obtained from human embryos.

Evaluate the use of stem cells from a patient's own bone marrow instead of stem cells from an embryo.

Give a conclusion to your answer.
\qquad

Q10.
Amylase is an enzyme found in the human body.
Amylase breaks down starch into sugars.
(a) Where is amylase produced in the human body?

Tick one box.

Liver and pancreas \square

Liver and stomach \square

Salivary glands and pancreas \square

Salivary glands and stomach \square
(b) Enzymes speed up chemical reactions.

Explain how amylase breaks down starch.
\qquad
(c) One sugar in the body is glucose.

Glucose is used for respiration.
Give one other use for glucose in the body.
\qquad
\qquad
(d) A student investigated the effect of temperature on the activity of human amylase.

This is the method used.

1. Put $2 \mathrm{~cm}^{3}$ of 1% starch solution into a boiling tube.

For more help, please our website www.exampaperspractice.co.uk
2. Put $2 \mathrm{~cm}^{3}$ of amylase solution into a second boiling tube.
3. Put both boiling tubes into a water bath at $20^{\circ} \mathrm{C}$.
4. After 5 minutes, mix the amylase and the starch together in one boiling tube.
5. After 30 seconds, add a drop of the starch and amylase mixture to a drop of iodine solution in one well of a spotting tile.
6. Repeat step 5 until the iodine solution no longer changes colour.
7. Repeat steps $1-6$ at $40^{\circ} \mathrm{C}$ and at $60^{\circ} \mathrm{C}$ and at $80^{\circ} \mathrm{C}$

Why did the student leave the starch and amylase solutions in the water bath for 5 minutes in step 3?
\qquad
\qquad
\qquad
(e) The temperature of the human body is $37^{\circ} \mathrm{C}$

The diagram below shows the results of the investigation at $20^{\circ} \mathrm{C}$ and at $80^{\circ} \mathrm{C}$
Complete the diagram to show the results you would expect at $40^{\circ} \mathrm{C}$ and at $60^{\circ} \mathrm{C}$

You should write a tick or a cross in each well of the spotting tile.

(f) There are different ways to investigate the breakdown of starch by amylase.

One other method is to measure the concentration of starch present in the solution every 30 seconds.

Why is this method better than the method the student used?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A colorimeter can be used to measure the concentration of starch present in the solution every 30 seconds.

A colorimeter measures the amount of light that cannot pass through a

For more help, please our website www.exampaperspractice.co.uk
solution.
This is known as absorbance.
Below shows a graph of absorbance against concentration of starch.

(g) The absorbance of the solution at $40^{\circ} \mathrm{C}$ was 0.56 arbitrary units after 30 seconds.

What was the concentration of starch in this solution?
\qquad

Concentration of starch $=$ \qquad \%

For more help, please our website www.exampaperspractice.co.uk
(h) The concentration of starch in the solution at $20^{\circ} \mathrm{C}$ after 1 minute is different from the concentration at $40^{\circ} \mathrm{C}$ after 1 minute.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-
(i) Predict the absorbance for the solution at $80^{\circ} \mathrm{C}$ after 30 seconds.

Give a reason for your answer.
Absorbance = \qquad arbitrary units

Reason
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q11.

The graph shows information about the yield of cereal crops grown in the European Union.

(a) Calculate the increase in the yield of cereal between 1970 and 2010.
\qquad
\qquad
\qquad

Increase in yield = \qquad tonnes/hectare
(b) Estimate by what fraction the yield of cereal increased between 1971 and 1992.

For more help, please our website www.exampaperspractice.co.uk

Tick one box.
$\frac{1}{10} \square \quad \frac{1}{3} \square \quad \frac{1}{2} \square \quad \frac{3}{4} \square$
(c) The increase in yield is partly due to increased use of nitrate fertilisers.

Which substance do plants make using nitrate ions?
Tick one box.

Cellulose \square

Fat

Protein

Starch

(d) The yield of cereal in 2004 was much greater than the yield in 2003.

Suggest three possible reasons for the increased yield in 2004.
Tick three boxes.

A genetically-modified variety of seed was sown in 2004. \square

A pathogenic fungus grew on the cereal in 2004.

Farmers added more nitrate to the soil in 2003.

More cereal seeds were sown in 2003.

More rain fell in spring and early summer in 2004.

The mean summer temperature was lower in 2003.

For more help, please our website www.exampaperspractice.co.uk

Humans eat cereals.
Humans also eat the animals that feed on cereals.
Figure 1 and Figure 2 show two food chains.
Figure 1

Figure 2

(e) Which pyramid of biomass is correct for the food chain shown in Figure 2?

Tick one box.

\square
\square
\square
\square

In Figure 1, 1 hectare of cereal crop would provide enough energy for 8 people for a year.

In Figure 2, 10 hectares of cereal crop would be needed to provide enough energy for only 1 person for a year.
(f) It is much more efficient for humans to get energy by eating cereals than by eating chickens.

Calculate how many times more efficient.
\qquad
\qquad
\qquad
\qquad
Answer =
\qquad times
(g) Why is it more efficient for humans to get energy by eating cereals than by eating chickens?

Tick two boxes.

Cereals gain extra energy from mineral ions in the soil.

Chickens contain more protein per gram than cereals.

Chickens use energy for movement and for keeping warm.

Much of the food eaten by chickens is wasted as faeces.

Not all parts of the cereal plants are edible. \square

Q12.

Pollution of rivers with untreated sewage can kill plants and animals.
Figure 1 shows a sprinkler bed at a sewage works.
The sewage trickles slowly downwards over the surfaces of the stones.
Figure 1

Some of the microorganisms on the stones feed on organic matter in the sewage.
The treated sewage is safe enough to pass into a river.
(a) Most of the microorganisms in the sprinkler bed respire aerobically.

Describe two features of the sprinkler bed that encourage aerobic respiration.
Use information from Figure 1.
1.
\qquad
\qquad
2.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad

Figure 2 shows the feeding relationships between the microorganisms in the sprinkler bed.

Figure 2

(b) Which organisms in Figure 2 are producers?

Tick one box.

Bacteria

Green algae

Large protists

Small protists

(c) Name one organism in Figure 2 which is both a primary and a secondary consumer.
(d) The bacteria are decomposers.

Figure 2 shows that the bacteria change organic matter into carbon dioxide and inorganic mineral ions.

Describe how the bacteria do this.
\qquad

Q13.

Anaerobic respiration happens in muscle cells and yeast cells.
The equation describes anaerobic respiration in muscle cells.
glucose \longrightarrow lactic acid
(a) How can you tell from the equation that this process is anaerobic?
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
(b) Exercise cannot be sustained when anaerobic respiration takes place in muscle cells.

Explain why.
\qquad
\qquad
\qquad
-
\qquad
\qquad
-
(c) The diagram below shows an experiment to investigate anaerobic respiration in yeast cells.

Tube A

What gas will bubble into Tube B?

Tick one box.

Carbon dioxide \square

(d) Describe how you could use tube \mathbf{B} to measure the rate of the reaction in tube A.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Anaerobic respiration in yeast is also called fermentation.

Fermentation produces ethanol.
Give one use of fermentation in the food industry.
\qquad
\qquad

Q14.
All living cells respire.
(a) Respiration transfers energy from glucose for muscle contraction.

Describe how glucose from the small intestine is moved to a muscle cell.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(b) The diagram below shows an experiment to investigate anaerobic respiration in yeast cells.

What is the purpose of the liquid paraffin in Tube \mathbf{A} ?

Tick one box.

To prevent evaporation \square

To stop air getting in \square
To stop the temperature going up

To stop water getting in \square
(c) The indicator solution in Tube \mathbf{B} shows changes in the concentration of carbon
dioxide $\left(\mathrm{CO}_{2}\right)$.
The indicator is:

- blue when the concentration of CO_{2} is very low
- green when the concentration of CO_{2} is low
- yellow when the concentration of CO_{2} is high.

What colour would you expect the indicator to be in Tube B during maximum rate of anaerobic respiration?

Tick one box.

Blue

Green

Yellow

(d) Suggest how the experiment could be changed to give a reproducible way to measure the rate of the reaction.

Include any apparatus you would use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Compare anaerobic respiration in a yeast cell with anaerobic respiration in a muscle cell.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad

Q15.
A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:
'A carbon to nitrogen ratio of 25:1 will produce fertile compost.'
Look at the table below.

For more help, please our website www.exampaperspractice.co.uk

Type of material to compost	Mass of carbon in sample in g	Mass of nitrogen in sample in g	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
\qquad
Ratio \qquad
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
\qquad
\qquad
\qquad
(d) Some of the leaves from the gardener's strawberry plant die.

The dead leaves fall off the strawberry plant onto the ground.
The carbon in the dead leaves is recycled through the carbon cycle.
Explain how the carbon is recycled into the growth of new leaves.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

A © sarahdoow/iStock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry \mathbf{A} to decay.
1.
\qquad
\qquad
\qquad
2.

For more help, please our website www.exampaperspractice.co.uk
(xAM PApERS PRACTICE
\qquad
\qquad
\qquad
3.
\qquad
\qquad
\qquad
\qquad
(3)
(Total 13 marks)

Q16.

Students investigated decomposition.
The students:

- put some decaying grass cuttings into a vacuum flask
- put a carbon dioxide sensor and a temperature sensor in the flask
- attached the sensors to a data logger
- closed the flask with cotton wool.

A vacuum flask was used to reduce the loss of thermal energy.
Figure 1 shows the investigation.
Figure 1

For more help, please our website www.exampaperspractice.co.uk
(a) Give one advantage of using a temperature sensor attached to a data logger instead of a thermometer.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the results from the data logger for carbon dioxide concentration in the flask for the next 25 days.

Figure 2

(i) Why did the concentration of carbon dioxide in the flask increase?
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
(ii) Suggest what has happened in the flask to cause the carbon dioxide concentration to level off after 20 days.
\qquad
\qquad
\qquad
(Total 5 marks)

Q17.

An athlete ran as fast as he could until he was exhausted.
(a) Figure 1 shows the concentrations of glucose and of lactic acid in the athlete's blood at the start and at the end of the run.

Figure 1

(i) Lactic acid is made during anaerobic respiration.

What does anaerobic mean?
\qquad
\qquad
\qquad
\square
(ii) Give evidence from Figure 1 that the athlete respired anaerobically during the run.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the effect of running on the rate of blood flow through the athlete's muscles.

Figure 2

(i) For how many minutes did the athlete run?

Time $=$ \qquad minutes
(ii) Describe what happens to the rate of blood flow through the athlete's

For more help, please our website www.exampaperspractice.co.uk
muscles during the run.
Use data from Figure 2 in your answer.
\qquad
\qquad
\qquad
-
\qquad
\qquad
\qquad
\qquad
(iii) Explain how the change in blood flow to the athlete's muscles helps him to run.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square
\qquad \square
\qquad
\qquad
\qquad _
\qquad -
\qquad
\qquad
\qquad
\qquad

Q18.
The diagram below shows an alveolus from a healthy lung and an alveolus from a damaged lung.

Alveolus from a damaged lung

(a) Which one of the following is a difference between the alveolus from the damaged lung and the alveolus from the healthy lung?

Tick ($\sqrt{ }$) one box.
The damaged alveolus has a smaller surface area.

The damaged alveolus has a shorter diffusion pathway. \square
The damaged alveolus has a better blood supply.

(b) A person with damaged alveoli finds exercising difficult.

Which one of the following is the reason why the damaged alveoli will make exercising difficult?

Tick ($\sqrt{ }$) one box.
Less carbon dioxide is taken in.

Less energy is needed for exercise. \square

Less oxygen is taken in. \square

Q19.
The heart is part of the circulatory system.
(a) (i) Name one substance transported by the blood in the circulatory system.
\qquad
(ii) What is the main type of tissue in the heart wall?
\qquad
\qquad
(b) Figure 1 shows the human heart.

Figure 1

(i) Which blood vessel, \mathbf{A}, \mathbf{B} or \mathbf{C}, takes blood to the lungs? \square
(ii) Name parts D and E shown in Figure 1.

D \qquad
\qquad
E
(c) Figure 2 shows three types of blood vessel, F, G and \mathbf{H}.

Figure 2

(i) What type of blood vessel is F?

Tick ($\sqrt{ }$) one box.
an artery

a capillary

a vein

(ii) A man needs to have a stent fitted to prevent a heart attack. In which type of blood vessel would the stent be placed?

Tick ($\sqrt{ }$) one box.
an artery

a capillary

a vein \square
(iii) Explain how a stent helps to prevent a heart attack.
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
\qquad

Q20.
Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is no CO_{2}.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.

Tube A	Tube B	Tube C	Tube D

For more help, please our website www.exampaperspractice.co.uk

(i) What is the purpose of Tube A?
\qquad
\qquad
\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction

For more help, please our website www.exampaperspractice.co.uk

Explanation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(3)
(Total 8 marks)

Q21.
A student ran on a treadmill for 5 minutes.
The speed of the treadmill was set at 12 km per hour.
The graph below shows the effect of the run on the student's heart rate.

(a) (i) What was the student's heart rate at rest?

For more help, please our website www.exampaperspractice.co.uk
\qquad beats per minute
(ii) After the end of the run, how long did it take for the student's heart rate to return to the resting heart rate?
\qquad minutes
(b) During the run, the student's muscles needed larger amounts of some substances than they needed at rest.
(i) Which two of the following substances were needed in larger amounts during the run?

Tick (\checkmark) two boxes.

(ii) Why are the two substances you chose in part (b)(i) needed in larger amounts during the run?

Tick (\checkmark) one box.

To help make more muscle fibres \square

To release more energy

To help the muscles to cool down

(c) After exercise, a fit person recovers faster than an unfit person.

Let the student's heart rate at the end of exercise $=\mathbf{a}$.
Let the student's heart rate after 2 minutes of recovery $=\mathbf{b}$.
The table below shows how the difference between \mathbf{a} and $\mathbf{b},(\mathbf{a}-\mathbf{b})$, is related to a person's level of fitness.

$(\mathbf{a}-\mathbf{b})$	Level of fitness
<22	Unfit
22 to 52	Normal fitness
53 to 58	Fit
59 to 65	Very fit
>65	Top athlete

What is the student's level of fitness?
Use information from the graph and the table.
$\mathbf{a}=$ \qquad beats per minute
b = \qquad beats per minute
$(\mathbf{a}-\mathbf{b})=$ \qquad beats per minute

Level of fitness = \qquad
(d) The student repeated the run with the treadmill set at 16 km per hour.

The student's heart rate took 3 minutes longer to return to the normal resting rate than when running at 12 km per hour.

Give reasons why it took longer to recover after running faster.
\qquad
\qquad -

Q22.
The diagram below shows the parts of the body that digest and absorb food.
It also shows some details about the structure of the stomach.

(a) Complete the table to show whether each structure is an organ, an organ system or a tissue.

For each structure, tick (\checkmark) one box.

Structure	Organ	Organ system	Tissue
Stomach			
Cells lining the stomach			
Mouth, oesophagus, stomach, liver, pancreas, small and large intestine			

(b) (i) The blood going to the stomach has a high concentration of oxygen. The cells lining the stomach have a low concentration of oxygen.

Complete the following sentence.
Oxygen moves from the blood to the cells lining the stomach by the process of \qquad -
(ii) What other substance must move from the blood to the cells lining the stomach so that respiration can take place?

Draw a ring around the correct answer.

glucose protein starch

(iii) In which part of a cell does aerobic respiration take place?

Draw a ring around the correct answer.

cell membrane mitochondria nucleus

Q23.

During exercise, the heart beats faster and with greater force.
The 'heart rate' is the number of times the heart beats each minute. The volume of blood that travels out of the heart each time the heart beats is called the 'stroke volume'.

In an investigation, Person 1 and Person 2 ran as fast as they could for 1 minute. Scientists measured the heart rates and stroke volumes of Person 1 and Person 2 at rest, during the exercise and after the exercise.

The graph below shows the scientists' results.

(a) The 'cardiac output' is the volume of blood sent from the heart to the muscles each minute.

$$
\text { Cardiac output }=\text { Heart rate } \times \text { Stroke volume }
$$

At the end of the exercise, Person 1's cardiac output $=160 \times 77=12320 \mathrm{~cm}^{3}$ per minute.

Use information from the figure above to complete the following calculation of Person 2's cardiac output at the end of the exercise.

At the end of the exercise:
Person 2's heart rate = \qquad beats per minute

Person 2's stroke volume $=$ \qquad cm^{3}

Person 2's cardiac output = \qquad cm^{3} per minute
(b) Person 2 had a much lower cardiac output than Person 1.
(i) Use information from the figure above to suggest the main reason for the lower cardiac output of Person 2.

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(ii) Person 1 was able to run much faster than Person 2.

Use information from the figure above and your own knowledge to explain why.
\qquad
(5)
(Total 9 marks)

Q24.
Many runners drink sports drinks to improve their performance in races.
A group of students investigated the effects of three brands of sports drink, A, B and \mathbf{C}, on the performance of three runners on a running machine. One of the runners is shown in the image below.

For more help, please our website www.exampaperspractice.co.uk

© Keith Brofsky/Photodisc/Thinkstock
Table 1 gives information for each drink.
Table 1

	Brand of sports drink		
Nutrient per dm 3	A	B	C
Glucose in g	63	31	72
Fat in g	9	0	2
lons in mg	312	332	495

(a) (i) In the investigation, performance was measured as the time taken to reach the point of exhaustion.

Exhaustion is when the runners could not run anymore.
All three runners:

- ran on a running machine until the point of exhaustion
- each drank $500 \mathrm{~cm}^{3}$ of a different brand of sports drink
- rested for 4 hours to recover
- ran on the running machine again and recorded how much time
they ran until the point of exhaustion.
The speed at which the runners ran was the same and all other variables were controlled.

The students predicted that the runner drinking brand \mathbf{B} would run for the shortest time on the second run before reaching the point of exhaustion.

Use information from Table 1 to suggest an explanation for the students' prediction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) If the balance between ions and water in a runner's body is not correct, the runner's body cells will be affected.

Describe one possible effect on the cells if the balance between ions and water is not correct.
\qquad
\qquad
\qquad
\qquad
(b) When running, a runner's body temperature increases.

Describe how the brain monitors body temperature.
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) Table $\mathbf{2}$ is repeated here to help you answer this question.

Table 2

	Brand of sports drink		
Nutrient per $\mathbf{d m}^{3}$	A	B	C
Glucose in g	63	31	72
Fat in g	9	0	2
lons in mg	312	332	495

People with diabetes need to be careful about drinking too much sports drink.

Use information from Table 2 to explain why drinking too much sports drink could make people with diabetes ill.
\qquad
(ii) Other than paying attention to diet, how do people with diabetes control their diabetes?
\qquad
\qquad
\qquad
\qquad
(1)
(Total 10 marks)

Q25.

Freshwater streams may have different levels of pollution. The level of pollution affects which species of invertebrate will live in the water.

Table 1 shows the biomass of different invertebrate species found in two different streams, \mathbf{X} and \mathbf{Y}.

Table 1

	Biomass in g	
Invertebrate species	Stream X	Stream Y
Mayfly nymph	4	0
Caddis fly larva	30	0
Freshwater shrimp	70	5
Water louse	34	10
Bloodworm	10	45
Sludge worm	2	90
Total	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$

(a) The bar chart below shows the biomass of invertebrate species found in Stream X.
(i) Complete the bar chart by drawing the bars for water louse, bloodworm and sludge worm in Stream Y.

Use the data in Table 1.

For more help, please our website www.exampaperspractice.co.uk

Table 2

Pollution level	Invertebrate species likely to be present
Clean water	Mayfly nymph
Low pollution	Caddis fly larva, Freshwater shrimp
Medium pollution	Water louse, Bloodworm
High pollution	Sludge worm

Which stream, \mathbf{X} or \mathbf{Y}, is more polluted?
Use the information from Table 1 and Table 2 to justify your answer.
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
\qquad
(b) There is a sewage works near another stream, \mathbf{Z}.

An accident caused sewage to overflow into Stream Z.
Two weeks later scientists took samples of water and invertebrates from the stream.
They took samples at different distances downstream from where the sewage overflowed.
The scientists plotted the results shown in Graphs P and \mathbf{Q}.
Graph P: change in water quality downstream of sewage overflow

Graph Q: change in invertebrates found downstream of sewage overflow

For more help, please our website www.exampaperspractice.co.uk

(i) Describe the patterns shown in Graph P.
\qquad
(ii) Describe the relationship between dissolved oxygen and the survival of mayfly nymphs in Stream Z. Suggest a reason for the pattern you have described.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
-
(c) Many microorganisms are present in the sewage overflow.

Explain why microorganisms cause the level of oxygen in the water to decrease.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.
Figure 1 shows an athlete running on a treadmill.
Figure 1

After running for several minutes, the athlete's leg muscles began to ache. This ache was caused by a high concentration of lactic acid in the muscles.
(a) The equation shows how lactic acid is made.

$$
\text { glucose } \longrightarrow \text { lactic acid (+ energy) }
$$

Name the process that makes lactic acid in the athlete's muscles.
\qquad
\qquad
(b) Scientists investigated the production of lactic acid by an athlete running at different speeds.

In the investigation:

- the athlete ran on the treadmill at 4 km per hour
- the scientists measured the concentration of lactic acid in the athlete's blood after 2 minutes of running.

The investigation was repeated for different running speeds.
Figure 2 shows the scientists' results.
Figure 2

Concentration

 of lactic acid in the blood in mmol per dm^{3}
(i) How much more lactic acid was there in the athlete's blood when he ran at 14 km per hour than when he ran at 8 km per hour?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer = \qquad mmol per dm ${ }^{3}$
(ii) Why is more lactic acid made in the muscles when running at 14 km per hour than when running at 8 km per hour?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
\qquad
\qquad
\qquad
\qquad
(3)
(Total 6 marks)

Q27.

Scientists investigated how exercise affects blood flow to different organs in the body.

The scientists made measurements of blood flow to different organs of:

- a person resting in a room at $20^{\circ} \mathrm{C}$
- the same person, in the same room, doing vigorous exercise at constant speed on an exercise cycle.

The table shows the scientists' results.

Organ	Blood flow in cm	
	resting	doing vigorous exercise
Brain	750	750
Heart	250	1000
Muscles	1200	22000
Skin	500	600
Other	3100	650

(a) In this investigation, it was better to do the exercise indoors on an exercise cycle than to go cycling outdoors on the road.

Suggest two reasons why.
Do not include safety reasons.
1.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk
2.
\qquad
\qquad
\qquad
\qquad
\qquad -
(b) Blood flow to one organ did not change between resting and vigorous exercise.

Which organ?
(c) (i) How much more blood flowed to the muscles during vigorous exercise than when resting?
\qquad
\qquad
\qquad
\qquad
Answer $=\ldots \mathrm{cm}^{3}$ per minute
(ii) Name two substances needed in larger amounts by the muscles during vigorous exercise than when resting.
1.
\qquad
2.
\qquad
\qquad
(iii) Tick (\checkmark) one box to complete the sentence.

The substances you named in part (c)(ii) helped the muscles to
make more lactic acid. \square
respire aerobically.

make more glycogen.

(iv) The higher rate of blood flow to the muscles during exercise removed larger amounts of waste products made by the muscles.

Which two substances need to be removed from the muscles in larger amounts during vigorous exercise?

Tick (\checkmark) two boxes.

(d) The total blood flow was much higher during exercise than when resting.

One way to increase the total blood flow is for the heart to pump out a larger volume of blood each beat.

Give one other way to increase the blood flow.
\qquad
\qquad
\qquad
\qquad

Q28.

The diagrams show four types of cell, A, B, C and \mathbf{D}.
Two of the cells are plant cells and two are animal cells.

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.

A and B

A and D

C and D

(ii) Give one reason for your answer.
\qquad
\qquad
\qquad
(1)
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming? \square
(ii) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, can produce glucose by photosynthesis? \square
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

osmosis
 photosynthesis
 respiration

(1)
(Total 5 marks)

Q29.

The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids that are fed into
the
reactor must be kept very low.
Suggest one reason for this.
Tick (\checkmark) one box.

A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

A higher concentration contains too much carbon dioxide.

(1)
(b) The pie chart shows the percentages of the different gases found in the biogas.

Gas \mathbf{X} is the main fuel gas found in the biogas.
(i) What is the name of gas \mathbf{X} ?

Draw a ring around one answer.
methane
nitrogen
oxygen
(ii) What is the percentage of gas \mathbf{X} in the biogas?

For more help, please our website www.exampaperspractice.co.uk

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Percentage of gas $\mathbf{X}=$ \qquad
(c) If the biogas generator is not airtight, the biogas contains a much higher percentage
of carbon dioxide.
Draw a ring around one answer in each part of this question.

(i) The air that leaks in will increase the rate of | aerobic respiration. |
| :--- |
| anaerobic respiration. |
| fermentation. |

(ii) The process in part (c)(i) occurs because the air contains
nitrogen.
oxygen.
(1)
(Total 6 marks)

Q30.
The mould Penicillium can be grown in a fermenter. Penicillium produces the antibiotic penicillin.

The graph shows changes that occurred in a fermenter during the production of penicillin.

(a) During which time period was penicillin produced most quickly?

Draw a ring around one answer.
$0-20$ hours $\quad 40-60$ hours $\quad 80-100$ hours
(b) (i) Describe how the concentration of glucose in the fermenter changes between 0 and 30 hours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2)

For more help, please our website www.exampaperspractice.co.uk
(ii) How does the change in the concentration of oxygen in the fermenter compare with the change in concentration of glucose between 0 and 30 hours?

Tick (\checkmark) two boxes.

The oxygen concentration changes after the glucose concentration.

The oxygen concentration changes before the glucose concentration.

The oxygen concentration changes less than the glucose concentration.

The oxygen concentration changes more than the glucose concentration.

(iii) What is the name of the process that uses glucose?

Draw a ring around one answer.

$$
\begin{array}{lll}
\text { distillation } & \text { filtration } & \text { respiration }
\end{array}
$$

Q31.

The heart pumps the blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest.
The blood pressure was measured in an artery and in a vein.

(a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?

Blood vessel \qquad
Give two reasons for your answer.
Reason 1

Reason 2

For more help, please our website www.exampaperspractice.co.uk
(b) Use information from the graph to answer these questions.
(i) How many times did the heart beat in 15 seconds? \qquad
(ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad
\qquad
\qquad
\qquad

$$
\text { Heart rate }=\ldots \text { beats per minute }
$$

(c) During exercise, the heart rate increases.

The increased heart rate supplies useful substances to the muscles at a faster rate.

Name two useful substances that must be supplied to the muscles at a faster rate during exercise.
1.
2.
\qquad

Q32.
The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium.

Fusarium is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) Why is glucose added to the fermenter?

For more help, please our website www.exampaperspractice.co.uk
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Name the process that causes the fermenter to heat up.
\qquad
(d) It is important to prevent microorganisms other than Fusarium growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
\qquad
\qquad
(ii) Suggest one way in which contamination of the fermenter by microorganisms could be prevented.
\qquad
\qquad
\qquad
\qquad
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

Name of amino acid	Amount of amino acid per $\mathbf{1 0 0} \mathbf{~ g}$			Daily amount in $\mathbf{~ m g}$
Lysine	Mycoprotein	Beef	Wheat	840
Methionine	910	1600	300	910

For more help, please our website www.exampaperspractice.co.uk

Phenylalanine	540	760	680	980
Threonine	610	840	370	490

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.
Remember to include a conclusion in your evaluation.
\qquad

Q33.
(a) Diagram 1 shows part of the breathing system.

Diagram 1

For more help, please our website www.exampaperspractice.co.uk

(i) Use words from the box to name the parts labelled $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.

alveolus	diaphragm	lung	rib	trachea

A \qquad

B \qquad
C \qquad
D \qquad
(ii) Parts Band \mathbf{C} move when we breathe in.

Part B moves \qquad
Part C moves \qquad
(b) A student used the apparatus shown in Diagram 2 to measure the maximum volume of air that he could breathe in one breath.
When the student breathes in, the piston moves upwards.
The piston moves back down after the student has breathed out.
Diagram 2

For more help, please our website www.exampaperspractice.co.uk

The student breathes in through the apparatus three times.
The drawings show the position of the piston after each of the three breaths. The volumes are measured in cm^{3}.

(i) Read the volume of each breath and write the volume in the table.

	Breath 1	Breath 2	Breath 3
Volume in $\mathbf{c m}^{\mathbf{3}}$			

(ii) Calculate the mean volume of air breathed in.
\qquad
\qquad

For more help, please our website www.exampaperspractice.co.uk

Mean volume of air breathed in = \qquad cm^{3}
(c) A teacher asks the student to investigate if students who take part in sports activities can breathe in a larger volume of air than students who do not take part.

Describe briefly how the student could use the same apparatus to do the investigation.
\qquad
\qquad -
(d) Photograph 1 shows a different piece of apparatus used to measure the volume of air that a person can breathe in one breath.

Photograph 1

© Digital Vision/Photodisc
When the student breathes out through the apparatus the pointer on the scale moves. The pointer stays in the same position when the student has finished.

Explain one advantage, apart from size, of using this apparatus rather than the apparatus described in part (b).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Photograph 2 shows one type of mechanical ventilator.

Photograph 2

Q34.
The photograph shows an athlete at the start of a race.

© Wavebreakmedia Ltd./Thinkstock
(a) The athlete's sense organs contain special cells.

These special cells detect changes in the environment.
(i) List A shows changes in the environment.

List B shows some of the athlete's sense organs.
Draw one line from each change in the environment in List A to the sense organ detecting the change in List B.

List B Sense organ

(ii) Which cells detect changes in the environment?

Tick (\checkmark) one box.

(b) During the race, the concentration of sugar in the athlete's blood decreases.

Why?
\qquad
\qquad
\qquad
\qquad
(c) Some athletes use anabolic steroids to improve performance.
(i) Draw a ring around the correct answer to complete the sentence.

(ii) Sporting regulations ban the use of anabolic steroids.

Suggest one reason why.
\qquad
(1)
(Total 7 marks)

Q35.

One factor that may affect body mass is metabolic rate.
(a) (i) What is meant by metabolic rate ?
\qquad
\qquad
\qquad
\qquad
(ii) Metabolic rate is affected by the amount of activity a person does.

Give two other factors that may affect a person's metabolic rate.
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
\qquad
\qquad
(b) Predicted early death is the number of years that a person will die before the mean age of death for the whole population. The predicted early death of a person is affected by their body mass.

Scientists have calculated the effect of body mass on predicted early death.
The graph shows the results of the scientists' calculations.

Ideal body mass

The number of times above or below ideal body mass is given by the equation:
Actual body mass
Ideal body mass
In the UK the mean age of death for women is 82.
A woman has a body mass of 70 kg . The woman's ideal body mass is 56 kg .
(i) Use the information from the graph to predict the age of this woman when she dies.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Age at death $=$ \qquad years
(ii) The woman could live longer by changing her lifestyle.

Give two changes she should make.

For more help, please our website www.exampaperspractice.co.uk
1.
\qquad
\qquad
\qquad
2.
\qquad
\qquad
(Total 7 marks)

Mark schemes

Q1.

(a) phloem
(b) translocation
(c) either:
less (sugars for) respiration
(so) less energy released
or
less amino acids made (1)
(so) less protein produced or less protein synthesis (1)
or
less cellulose made (1)
(so) weaker cell walls (1)
(d) (aphids) can fly to another plant or part of the plant ignore to fly unqualified
to get (more) food
allow to find a mate allow idea of less competition for food allow to escape predators do not accept escape prey
(e) (oil) prevents aphids from attaching to leaf or causes aphids to slide off leaf ignore 'the leat is slippery'

or

idea that oil may harm / kill the aphid
allow oil may be unpleasant to the aphid
(f) (plant / stem has) thorns
allow spines / spikes / prickles ignore stings do not accept thorns protect (the plant) from predators
(g) C
if any other letter given then no marks for the question
(fungi / spores) blown by / in direction of the wind allow black spot / disease is blown by / in direction of the wind
or
it's the closest plant (to A)
do not accept reference to bacteria / viruses / pollen being blown
(h) any one from:

- spread rose bushes out more allow isolate the infected plant allow idea of barrier around infected plant ignore separate unless qualified
- remove any infected parts of the plant allow remove infected plant / A
- use a fungicide ignore pesticide do not accept insecticides / herbicide

Q2.
(a) diffusion
(b) A
(c) B
(d) (earthworm) can absorb more oxygen (in a given time) or increases / more gas exchange allow get / obtain / take in more oxygen ignore easier absorption of oxygen ignore references to food
(e) lipase
(f) more oxygen (in soil with earthworms)
allow earthworms bring oxygen to soil
(for) more (aerobic) respiration
do not accept anaerobic respiration
(of) bacteria / fungi / microorganisms / microbes / decomposers
reference to more is only needed once for the first two marking points
(g) fertilisation
ignore sexual reproduction
(h) asexual (reproduction)
allow cloning

Q3.

(a) any one from:

- respiration
- formation of proteins
- formation / breakdown of glycogen
- breakdown of (excess) protein or formation of urea
- photosynthesis or formation of glucose / starch (in plants)
ignore formation of carbohydrates
allow other correct reference to metabolic reactions in cells ignore reference to digestion
(b) males have a higher metabolic rate than females after five years of age
the mean metabolic rate of females decreases faster than males up to 25 years of age
each additional tick negates a mark
(c) $\frac{17}{53} \times 100$
32.075472...
allow correct rounding of this to at least 4 significant figures
32.1
allow a correct reduction to 3 significant figures from an incorrect calculation for marking point 2
(d) any two from:
allow converse
- (person) R heart rate rose / increased more slowly than (person) S
- (person) R heart rate levelled off whereas (person) S continued to increase
- (person) R heart rate rose less (overall / after 5 minutes of exercise) than S
allow correct use of figures
e.g. R increased (overall) by 39 bpm / 65\% and S
by 54 bpm / 69\% ignore lack of units
(e) correct scale and axis labelled
allow min(s)
do not accept 'm'
the zero is not required on the x-axis
all points plotted correctly (to within $\pm 1 / 2$ square)
allow 4 or 5 correct plots for 1 mark
line joined point to point or correct curved line of best fit
$\frac{132-78}{12}$
allow $\frac{54}{12}$
allow sequential deductions of 12 four or five times
4.5 (minutes) / $41 / 2$ minutes / 4 minutes 30 seconds / 4:30 do not accept 4:50 or 4 minutes 50 seconds an answer of 4.5 minutes scores 2 marks
(g) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- two groups of people - non-smokers and smokers
- have at least five people in each group or large groups
- get each person to do (named) exercise
- controlled variables:
- \quad same number of people in each group or large groups
- same gender
- same level of activity / exercise
- same age
- no health issues / illnesses
- same type of exercise
- \quad same time for exercise
- record heart rate for each person before and after exercise
- calculate increase in heart rate for each person after exercise
- compare results for each group
for level 3, students should refer to at least 5 smokers and 5 non-smokers, carrying out exercise with control variables and a means of determining an increase in heart rate
for level 2, students should refer to 'groups' of smokers and non-smokers exercising

Q4.
(a) kills microorganisms / bacteria / fungi / viruses / microbes
allow to remove microorganisms / bacteria / fungi
/ viruses / microbes
ignore germs
allow so mycoprotein is not contaminated
(which) compete for food / oxygen
or
which make toxins
allow so mycoprotein is safe to eat

or

which are pathogens
or
which might kill the fungus / Fusarium
(b) $30^{\circ} \mathrm{C}$
(c) for (aerobic) respiration do not accept anaerobic
(which) releases energy (for growth)
do not accept produces energy
allow glucose is used to make other organic substances e.g. protein
(d) any two from:
so Fusarium can

- grow faster / better
- get sufficient food / glucose / minerals
allow more / enough
- get sufficient oxygen
allow more / enough
- get rid of sufficient carbon dioxide
allow more / enough
allow waste
- be kept at a (suitable) temperature
allow to avoid 'clumping'
(e) 200 grams

Q5.

(a) 2400 and 2280
or
500 and 380

120
an answer of 120 scores 2 marks
(b) respiration of glucose
(c) (more) sweating
ignore reference to vasodilation /
vasoconstriction
(because) exercise releases heat
or
need to cool the body
or
need to lose heat
or
need to maintain body temperature
do not accept energy being produced
(d) more energy needed
do not accept energy production do not accept energy needed for respiration
(so) more (aerobic) respiration
(so) increased breathing (rate / depth) (to supply oxygen or remove carbon dioxide / water)
'more' does not need to be stated a second time to gain marking point 1 and marking point 2

Q6.
(a) x-axis: scale + labelled, including units
scale $\geq 1 / 2$ width of graph paper label: biomass in $\mathrm{g} / \mathrm{m}^{2}$
bar widths correct
$\pm 1 / 2$-square each side
allow 1 mark if 3 correct
all 4 bars correctly labelled
large fish + small fish + invertebrate (animals) + algae
or
(trophic level) $4+3+2+1$
or
tertiary consumer + secondary consumer +
primary consumer + producer
ignore bar heights
(b) $\frac{840-10}{840} \times 100$
allow equivalent calculation
98.809523... / 98.810 / 98.81 / 98.8

99
allow answer given to two significant figures from an incorrect calculation in step 2
an answer of 99 scores 3 marks
(c) inedible parts / example
allow eaten by other animals or not all organisms
eaten
or
egested / faeces
allow not digested allow excretion / urine ignore waste
or
respiration / as CO_{2}
ignore energy losses
ignore movement
(d) bacteria decay organic matter / sewage / algae / dead plants
(by) digestion
allow example such as starch broken down to sugar
or
protein broken down to amino acids
(and) bacteria respire aerobically
or
respire using oxygen
(which) lowers oxygen concentration (in water)
or
fish have less oxygen
allow reduced respiration of fish
(so) reduced energy supply causes death of fish
allow toxins in the sewage kill fish
ignore pathogens or (pathogenic) bacteria cause
disease in fish and kills them

Q7.
(a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) atmospheric air contains less carbon dioxide than exhaled air allow converse
(flask B goes more cloudy because) carbon dioxide is produced in (aerobic) respiration (by woodlice)
(c) for comparison / to compare allow answers in the context of the investigation e.g.
or
to check that no other factor / variable is influencing the results
to prove that the results obtained were due to the woodlice respiring and nothing else
or
to prove that the woodlice produced the carbon dioxide and nothing else
(d) (flask A) would remain colourless
ignore references to clear allow not cloudy
(flask B) would remain colourless
(e) lactic acid
(f) alcohol / ethanol

Q8.
(a) electron (microscope)
(b) $\frac{30000}{200}$
an answer of $150(\mu \mathrm{~m})$ scores 2 marks

150 ($\mu \mathrm{m}$)
if answer is incorrect allow for $\mathbf{1}$ mark sight of 0.015 / 0.15 /
1.5/15
allow ecf for incorrect measurement of line \boldsymbol{X} for max $\mathbf{1}$ mark
(c) either
large surface area
allow (vacuole contains) cell sap that is more concentrated than soil water (1)
for more / faster osmosis
create / maintain concentration / water potential gradient (1)
or
allow thin (cell) walls
for short(er) diffusion distance
(d) (on hot day) more water lost
allow converse for a cold day if clearly indicated
more transpiration
or
more evaporation
so more water taken up (by roots) to replace (water) loss (from leaves)
(e) (aerobic) respiration occurs in mitochondria do not accept anaerobic respiration
(mitochondria / respiration) release energy
do not accept energy produced / made / created
(energy used for) active transport
to transport ions, against the concentration gradient
or
from a low concentration to a high concentration

Q9.
(a) an undifferentiated / unspecialised cell
that can differentiate / become / change into (many) other cell types
(b) (malignant tumours) invade / spread to other tissues via the blood (benign don't) or
(malignant tumours) form secondary tumours in other organs
ignore cancer unqualified
allow converse
allow metastasises
(c) mitosis
correct spelling only
(d) glucose
answers in any order
ignore sugar
protein / amino acids
(e) no need to wait for a donor
or
can be done immediately
(so) no risk of rejection
or
no need for immunosuppressant drugs
if no other marks awarded, allow for 1 mark idea of ethics surrounding the use of tissue from another / dead person
(f) stent opens up the trachea
allowing air to flow through
or
allowing patient to breathe
(g) Level 3 (5-6 marks):

A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

Level 2 (3-4 marks):

Some logically linked reasons are given. There may also be a simple judgement.

Level 1 (1-2 marks):

Relevant points are made. They are not logically linked.

Level 0

No relevant content

Indicative content

embryos advantages

- can create many embryos in a lab
- painless technique
- can treat many diseases / stem cells are pluripotent / can become any type of cell (whereas bone marrow can treat a limited number)

embryos disadvantages

- harm / death to embryo
- embryo rights / embryo cannot consent
- unreliable technique / may not work

bone marrow advantages

- no ethical issues / patient can give permission
- can treat some diseases
- procedure is (relatively) safe / doesn't kill donor
- tried and tested / reliable technique
- patients recover quickly from procedure

bone marrow disadvantages

- risk of infection from procedure
- can only treat a few diseases
- procedure can be painful

both procedures advantage

can treat the disease / problem
both procedures disadvantages

- risk of transfer of viral infection
- some stem cells can grow out of control / become cancerous

Q10.
(a) salivary glands and pancreas
(b) starch / substrate fits into active site (of enzyme)
shape of active site is unique / complementary to substrate allow converse
or
substrate is specific to active site / enzyme
allow enzyme has a high specificity for substrate
bonds (within starch / substrate
or
between sugar molecules) are broken
(c) converted to new carbohydrates / glycogen / named organic compound (e.g. protein / fat)
(d) to allow (the starch and amylase / solutions) to equilibrate (to the temperature of the water bath)
or
to get the starch and amylase / solutions to the same temperature $/ 20^{\circ} \mathrm{C}$ or
to get the starch and amylase / solutions to the (same) temperature of the water bath
(e) $40^{\circ} \mathrm{C}$
all wells contain a symbol
and
must contain at least two crossed
(*) wells at the end allow final three wells crossed

$60^{\circ} \mathrm{C}$

all wells contain a symbol
and
must have fewer crossed ${ }^{(*)}$ wells at the end than at $40^{\circ} \mathrm{C}$
allow all wells ticked (\checkmark)
for either mp do not allow a crossed well followed by a ticked well
(f) more accurate
allow (so) closer to (the) true value
(because) it is a quantitative measure allow (it's) an actual value as opposed to an opinion
or
less / not subjective
allow colour is only qualitative
(g) 0.07 (\%)
(h) starch is broken down less quickly (at $20^{\circ} \mathrm{C}$) allow converse
because, at $20^{\circ} \mathrm{C}$, substrates / enzymes / molecules have less (kinetic) energy
(i) 1.08 (arbitrary units)
at $80^{\circ} \mathrm{C}$, enzyme / amylase has denatured
allow description of denaturation do not allow enzyme is killed
so starch is not broken down (at all)
allow the concentration of starch is still 0.5\%

Q11.

(a) correct figures from graph: $5.0 / 5$ and $2.60 / 2.6$
2.40 / 2.4
an answer of 2.40 / 2.4 scores 2 marks
allow correct answer from candidate's figures from graph for 1 mark
(b) $\frac{1}{3}$
(c) protein
(d) a genetically-modified variety of seed was sown in 2004
more rain fell in spring and early summer in 2004
1
the mean summer temperature was lower in 2003

(e)
(f) 80
(g) chickens use energy for movement and for keeping warm
much of the food eaten by chickens is wasted as faeces

Q12.
(a) any two from:

- sprinkled through air
- air spaces between stones
- thin layer over stones (for efficient diffusion)
- slow flow (for efficient diffusion)
(b) green algae
(c) (large / small) protist
(d) Level 2 (3-4 marks):

Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.

Level 1 (1-2 marks):

Facts, events or processes are identified and simply stated but their relevance is not clear.

No relevant content (0 marks)

Indicative content

digestion:

- (external) enzymes released
- role of enzymes - e.g. amylase / protease / lipase
- substrates \& products - e.g. starch \rightarrow sugar / protein \rightarrow amino acids / fat \rightarrow fatty acids

absorption:

- by diffusion / active transport
deamination:
- amino acids \rightarrow ammonia / ammonium ions
release of other ions:
- e.g. phosphate / nitrate / magnesium
respiration:
- produces carbon dioxide (+ water)
or
equation is given
- release of energy allows other processes to take place e.g. active transport

Q13.

(a) no oxygen (is used)
(b) muscles become fatigued / stop contracting
because not enough energy is transferred
(c) carbon dioxide
(d) count the bubbles
or
measure volume of gas
in a given time
(e) brewing / bread making
allow other suitable use of fermentation in food industry

Q14.
(a) glucose is absorbed by diffusion into the bloodstream
then blood delivers glucose to muscles in capillaries
1
(b) to stop air getting in
(c) yellow
(d) collect the CO_{2} / gas with a measuring cylinder / gas syringe
(volume collected) in a certain time using a timer / watch
(e) yeast produces ethanol but muscles produce lactic acid marks can be awarded from correct word or balanced symbol equations
yeast produces CO_{2} but muscles do not answers must be comparative
both release small amounts of energy
ignore both occur without oxygen

Q15.

(a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore) $49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to $25: 1$ (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.

0 marks:

No relevant content.

Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide
explanations:
- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

Q16.
(a) any one from:

- continuous readings
- do not need to be there
allow automatic readings
- (more likely to be) accurate
allow greater resolution do not allow valid
- reduces human error
allow easier to read
(b) (i) microorganisms
allow microbes / bacteria / fungi / decomposers for microorganisms, throughout
(microorganisms) respire
respiration / decay / microorganisms releases carbon dioxide ignore carbon released
(ii) all grass decomposed / decayed / rotted allow idea that all microorganisms dead (due to accumulation of waste or lack of oxygen)
allow lack of / no oxygen (for respiration of microorganisms)

Q17.

(a) (i) without oxygen
allow not enough oxygen
ignore air
ignore production of CO_{2}
ignore energy
(ii) more / high / increased lactic acid (at end)
allow approximate figures (to show increase) ignore reference to glucose
(b) (i) 1.5
allow only 1.5 / 1½ / one and a half
(ii) increases at first and levels off ignore subsequent decrease
suitable use of numbers eg
rises to 10 / by 9 (dm^{3} per min)
or
increases up to $1.5(\mathrm{~min}) /$ levels off after $1.5(\mathrm{~min})$ (of x axis timescale) allow answer in range 1.4 to 1.5
or
after the first minute (of the run)
(iii) supplies (more) oxygen
supplies (more) glucose
need 'more/faster' once only for full marks allow removes (more) CO_{2} / lactic acid / heat as an alternative for either marking point one or two, once only
for (more) respiration
releases (more) energy (for muscle contraction)

Q18.
(a) The damaged alveolus has a smaller surface area.
(b) Less oxygen is taken in.

Q19.
(a) (i) any one from:

- glucose
- oxygen
- carbon dioxide
- urea
- water
allow hormones
allow named example of a product of digestion
(ii) (cardiac) muscle
allow muscular
(b) (i) B
(ii) \mathbf{D} atrium / atria
ignore references to left or right

E ventricle(s)

ignore references to left or right
(c) (i) a vein
(ii) an artery
(iii) keeps artery open / wider
allow ecf from part cii
(a) $6 \mathrm{H}_{2} \mathrm{O}$
in the correct order
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) (i) control
do not accept 'control variable'
allow:
to show the effect of the organisms
or
to allow comparison
or
to show the indicator doesn't change on its own
(ii) snail respires
releases CO_{2}
(iii) turns yellow
plant can't photosynthesise so CO_{2} not used up
but the snail (and plant) still respires so CO_{2} produced

Q21.
(a) (i) 50
(ii) 4 accept 3.9-4.0
(b) (i) glucose
oxygen
(ii) to release more energy
(c) correct readings from graph:
$a=120$
$\mathrm{b}=60$
allow 60-61
calculation correct for candidate's figures:
e.g. $a-b=60$
level of fitness correct for candidate's figures:
e.g. very fit
(d) any four from:

- higher heart rate (at $16 \mathrm{~km} / \mathrm{h}$) (so takes longer to slow to normal)
- more energy needed
- not enough O_{2} supplied / more O_{2} needed / reference to O_{2}-debt
- (more) anaerobic respiration
- (more) lactic acid made / to be broken down / to remove / to oxidise
- higher blood flow needed to deliver (the required amount of) oxygen.
'more' must be given at least once for full marks do not allow more energy produced
allow higher blood flow to remove lactic acid / remove (additional) CO_{2}

Q22.
(a)

Structure	Organ	Organ system	Tissue
Stomach	\checkmark		
Cells lining the stomach			\checkmark
Mouth, oesophagus, stomach, liver, pancreas, small and large intestine		\checkmark	

all 3 correct $=2$ marks
2 correct $=1$ mark
1 or 0 correct $=0$ marks
(b) (i) diffusion
allow phonetic spelling
(ii) glucose
(iii) mitochondria

Q23.
(a) 5624
allow 2 marks for:

- correct HR = 148 and correct SV = 38 plus wrong answer / no answer
or
- only one value correct and ecf for answer
allow 1 mark for:
- incorrect values and ecf for answer
or
- only one value correct
(b) (i) Person 2 has low(er) stroke volume / SV / described eg Person 2 pumps out smaller volume each beat do not allow Person 2 has lower heart rate
(ii) Person 1 sends more blood (to muscles / body / lungs)
(which) supplies (more) oxygen
(and) supplies (more) glucose
(faster rate of) respiration or transfers (more) energy for use
ignore aerobic / anaerobic
allow (more) energy release
allow aerobic respiration transfers / releases more energy (than anaerobic)
do not allow makes (more) energy
removes (more) CO 2 / lactic acid / heat
allow less oxygen debt
or less lactic acid made
or (more) muscle contraction / less muscle fatigue
if no other mark awarded,
allow person 1 is fitter (than person 2) for max 1 mark
(a) (i) has the least amount of glucose
allow least amount of fat or no fat
(to) transfer energy (for the run) allow (to) release energy (for the run) do not allow produces energy do not allow 'energy for respiration'
(ii) any one from:
- cells will work inefficiently
- absorb too much water / swell / overhydrate
- lose too much water / shrink / dehydrate ignore turgid / flaccid cells burst is insufficient allow cramp in muscle.
(ii) inject insulin
or
have an insulin pump (fitted)
do not allow swallow insulin
accept exercise
accept inhale insulin
accept take metformin or other correctly named drug
allow pancreatic transplant

Q25.
(a) (i) correct bar heights three correct 2 marks
two correct 1 mark one or none correct 0 marks ignore width
(ii) (Stream Y)
has many sludge worms / bloodworms
or
has no mayflies / caddis or few shrimp
allow 1 mark if invertebrate not named but correct association given
which indicate medium or high pollution
(b) (i) suspended solids increase (as a result of sewage overflow)
then decrease downstream / return to original levels
oxygen levels decrease (after sewage overflow)
and then rise again
(ii) any three from:

- mayflies decrease (to zero) near overflow accept 'have died out7
- because oxygen is low or mayflies have high oxygen demand
- mayflies repopulate / increase as oxygen increases again
- can't be sure if dissolved oxygen or suspended solids is the cause
(c) they respire / respiration
aerobic respiration gains 2 marks
this requires / uses up the oxygen

Q26.
(a) anaerobic respiration
allow phonetic spelling
(b) (i) 4.4
4.2, 4.3, 4.5 or 4.6 with figures in tolerance (6.7 to 6.9 and 2.3 to 2.5) and correct working gains 2 marks
4.2, 4.3, 4.5 or 4.6 with no working shown or correct working with one reading out of tolerance gains 1 mark correct readings from graph in the ranges of 6.7 to 6.9 and 2.3 to 2.5 but no answer/ wrong answer gains 1 mark
(ii) more energy is needed / used / released
do not allow energy production
(at 14 km per hour)
ignore work
not enough oxygen (can be taken in / can be supplied to muscles)
allow reference to oxygen debt
do not allow less / no oxygen
so more anaerobic respiration (to supply the extra energy) or more glucose changed to lactic acid
allow not enough aerobic respiration

Q27.
(a) any two from:
or allow converse for outdoors

- constant speed
- variable speed
- constant effort
- variable terrain
- constant temperature
- traffic conditions
- variable temperature
- wind (resistance)
- rain / snow allow weather
allow pollution only if qualified by effect on body function but ignore pollution unqualified
if no other marks obtained allow variable conditions outdoors
(b) Brain
(c) (i) 20800
correct answer with or without working gains 2 marks if answer incorrect, allow 1 mark for use of 1200 and 22000 only
do not accept other named substances eg CO_{2} water
glucose / sugar
allow glycogen
ignore food / carbohydrate
(iii) respire aerobically
(iv) carbon dioxide
lactic acid
(d) increased heart rate
ignore adrenaline / drugs
accept heart beats more but not heart pumps more

Q28.
(a) (i) \mathbf{C} and \mathbf{D}
no mark if more than one box is ticked
(ii) any one from:
do not allow if other cell parts are given in a list

- (have) cell wall(s)
- (have) vacuole(s)
(b) (i) \mathbf{A}
apply list principle
(ii) D
apply list principle
(c) respiration
apply list principle

Q29.
(a) a higher concentration would be difficult to stir
(b) (i) methane
(ii) 60

100-(5+35) but incorrect answer allow 1 mark
(c) (i) aerobic respiration
(ii) oxygen

Q30.
(a) $40-60$ hours
(b) (i) decrease
$1^{\text {st }}$ slowly then faster / appropriate detail from the graph - e.g. from 7.8 to 0 / faster after 4-10h
(ii) oxygen after glucose
extra box ticked cancels 1 mark
oxygen less than glucose
(iii) respiration

Q31.
(a) A

> no mark - can be specified in reason part
> if B given - no marks throughout
> if unspecified + 2 good reasons $=1$ mark
high(er) pressure in A
allow opposite for B
do not accept 'zero pressure' for B
pulse / described in A
accept fluctuates / 'changes'
allow reference to beats / beating
ignore reference to artery pumping
(b) (i) 17
(ii) 68 accept correct answer from student's (b)(i) $\times 4$
(c) oxygen / oxygenated blood allow adrenaline ignore air
glucose / sugar
extra wrong answer cancels - eg sucrose / starch / glycogen / glucagon / water allow fructose ignore energy ignore food

Q32.
(a) circulating / mixing / described or temperature maintenance
supply oxygen
or for aerobic conditions
or for faster respiration
do not allow oxygen for anaerobic respiration
(b) energy supply / fuel / use in respiration
do not allow just food / growth
ignore reference to aerobic / anaerobic
or material for growth / to make mycoprotein
(c) respiration
allow exothermic reaction
allow catabolism
ignore metabolism
ignore aerobic / anaerobic
(d) (i) any one from:

- compete (with Fusarium) for food / oxygen or reduce yield of Fusarium
- make toxic waste products or they might cause disease / pathogenic or harmful to people / to Fusarium do not allow harmful unqualified
(ii) steam / heat treat / sterilise fermenter (before use) not just clean

or

steam / heat treat / sterilise glucose / minerals / nutrients / water (before use)
or
filter / sterilise air intake
or
check there are no leaks allow sterilisation unqualified not just use pure glucose
(e) any three from:

- beef is best or beef is better than mycoprotein
- mycoprotein mainly better than wheat
- more phenylalanine in wheat than in mycoprotein allow equivalent numerical statements
- but no information given on other amino acids / costs / foods
overall conclusion:
statement is incorrect because
either
it would be the best source for vegetarians
or
for given amino acids, beef is the best source
or
three foods provide insufficient data to draw a valid conclusion

Q33.
(a) (i) A lung

B rib

C diaphragm

D alveolus / alveoli
(ii) (B moves) up(wards) / out / up and out
(C moves) down(wards) / flattens
do not allow inwards ignore outwards
if neither mark gained allow 1 mark for correct reference to muscle contraction
(b) (i) 1640

1440

1720
allow max 1 for 3 correct values using of bottom of piston:
$1380+1180+1480$ to 1485
(ii) 1600
correct answer gains 2 marks
if answer incorrect allow 1 mark for evidence of
$(1640+1440+1720) \div 3$
allow ecf from (b)(i)
allow use of two numbers divided by two if one is considered anomalous:
$\frac{(1640+1720)}{2}=1680$
for 2 marks
(c) two groups of students - one group sports activity participants, other not allow students as a group
fair test eg groups same height / same mass / same sex
1
measure air breathed in by each student / repeat previous experiment then calculate mean for group
(d) pointer remains still after breathing / cylinder will move down after breathing (in)
error reading volume less likely
allow more accurate / reliable
(e) (i) operator squeezes bag
air forced / pushed into lungs
or
positive pressure ventilator
(ii) any two from:

- air pressure / volume not regulated
- operator will tire / must be present at all times / variable intervals
- too much / too little air
allow may 'overbreathe' the patient

Q34.
(a) (i)

1 mark for each line
do not award a mark for a 'change' that has two lines
(ii) receptor cells
(b) used to provide (extra) energy
allow (more) used in respiration
allow suitable reference to muscles
do not accept used for sweat
(c) (i) growth of muscles
(ii) (these drugs have) possible side / harmful effects
or
answers that refer to 'fairness of competition' e.g. cheating

Q35.
(a) (i) rate of chemical reactions (in the body)
(ii) any two from:

- heredity / inheritance / genetics
- proportion of muscle to fat or (body) mass
allow (body) weight / BMI
- age / growth rate
- gender
accept hormone balance or environmental temperature ignore exercise / activity

Q1.
One factor that may affect body mass is metabolic rate.
(a) (i) What is meant by metabolic rate?
\qquad
\qquad
(ii) Metabolic rate is affected by the amount of activity a person does.

Give two other factors that may affect a person's metabolic rate.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Predicted early death is the number of years that a person will die before the mean age of death for the whole population. The predicted early death of a person is affected by their body mass.

Scientists have calculated the effect of body mass on predicted early death.
The graph shows the results of the scientists' calculations.

Ideal body mass
The number of times above or below ideal body mass is given by the equation:
$\frac{\text { Actual body mass }}{\text { Ideal body mass }}$

In the UK the mean age of death for women is 82.
A woman has a body mass of 70 kg . The woman's ideal body mass is 56 kg .
(i) Use the information from the graph to predict the age of this woman when she dies.
\qquad
\qquad
\qquad

Age at death = \qquad years
(ii) The woman could live longer by changing her lifestyle.

Give two changes she should make.

1. \qquad
\qquad
2. \qquad
\qquad

Q2.

(a) Use words from the box to complete the equation for aerobic respiration.

alcohol	glucose	lactic acid	water

(b) Some students investigated the effect of temperature on the rate of aerobic respiration in earthworms.

The diagram shows the apparatus the students used.
When the tap is closed, the bead of liquid moves to the left as the earthworms take in oxygen.

The students put the test tube into a water bath at $20^{\circ} \mathrm{C}$ for 10 minutes.
They left the tap open during this time.

Why did the students put the test tube in the water bath at $20^{\circ} \mathrm{C}$ for 10 minutes?
Tick (\checkmark) one box.

Because the air contains more oxygen at $20^{\circ} \mathrm{C}$.

Because the air contains less carbon dioxide at $20^{\circ} \mathrm{C}$.

So the earthworms' body temperature would change to $20^{\circ} \mathrm{C}$.

(c) The students then:

- closed the tap
- started a stopwatch
- recorded the position of the bead of liquid every 2 minutes for 10 minutes
- repeated the experiment at $10^{\circ} \mathrm{C}$.

The graph shows the students' results.

(i) How much oxygen did the earthworms take in during the 10 minutes at $20^{\circ} \mathrm{C}$?

Use information from the graph to work out your answer.

Volume of oxygen taken in = \qquad mm^{3}
(ii) The earthworms took in this volume of oxygen in 10 minutes.

Use your answer from part (c)(i) to calculate how much oxygen the earthworms took in each minute.
\qquad
\qquad
Volume of oxygen taken in $=$ \qquad mm^{3} per minute
(iii) The earthworms took in less oxygen each minute at $10^{\circ} \mathrm{C}$ than they took in at $20^{\circ} \mathrm{C}$.

Explain why.
\qquad
\qquad
\qquad
\qquad
(d) When drawing the line on the graph for the experiment at $10^{\circ} \mathrm{C}$, the students ignored the reading at 8 minutes.
(i) Suggest why they ignored the reading at 8 minutes.
\qquad
\qquad
(ii) One student suggested they should repeat the experiment twice more at each temperature.

How would repeating the experiment improve the investigation?
\qquad
\qquad

Q3.
(a) Yeast cells can respire anaerobically.

The equation for anaerobic respiration in yeast is:
glucose \longrightarrow alcohol + carbon dioxide (+ energy)
Give one way in which anaerobic respiration in yeast cells is different from anaerobic respiration in human muscle cells.
\qquad
\qquad
(b) Yeast can use other types of sugar instead of glucose.

Some scientists investigated the effect of three different types of sugar on the rate of anaerobic respiration in yeast.

The scientists:

- used the apparatus shown in Diagram 1 with glucose sugar
- kept the apparatus at $20^{\circ} \mathrm{C}$
- repeated the investigation with fructose sugar and then with mannose sugar
- repeated the investigation with water instead of the sugar solution.

Diagram 1

(i) Give two control variables the scientists used in this investigation.
\qquad
\qquad
(ii) The graph shows the scientists' results.

From this information, a company decided to use fructose to produce alcohol and not mannose or glucose.

Explain the reason for the company's choice.
\qquad
\qquad
\qquad
\qquad

Q4.
Some students investigated the best temperature for gas production by yeast.
The students set up the apparatus as shown in Diagram 1.

Diagram 1

Diagram 2 shows the results after one hour.

Diagram 2

(a) In each apparatus the yeast produced a gas.
(i) Name this gas.
\qquad
(ii) Name the process which produces this gas.
\qquad
(b) One student said that the best temperature for the yeast to produce the gas was $30^{\circ} \mathrm{C}$.

What is the evidence for this in Diagram 2?
\qquad
\qquad
(c) A second student said that the investigation might not have produced reliable results.
(i) What should the students do next to check the reliability of their results?
\qquad
\qquad
(ii) How would the students then know if their results were reliable?
\qquad
\qquad
(d) A third student said that the investigation might not have produced an accurate value for the best temperature for gas production.

What should the students do next to check that $30^{\circ} \mathrm{C}$ was an accurate value for the best temperature?
\qquad
\qquad
\qquad
\qquad

Q5.
Two people did the same amount of gentle exercise on an exercise cycle.
One person had a muscle disease and the other had healthy muscles.
The graph shows the effect of the exercise on the heart rates of these two people.

(a) Describe three ways in which the results for the person with the muscle disease are different from the results for the healthy person.

To gain full marks in this question you need to include data from the graph in your answer.

1. \qquad
\qquad
2. \qquad
3. \qquad
\qquad
(b) The blood transports glucose to the muscles at a faster rate during exercise than when a person is at rest.
(i) Name one other substance that the blood transports to the muscles at a faster rate during exercise.
\qquad
(ii) People with the muscle disease are not able to store glycogen in their muscles.

The results shown in the graph for the person with the muscle disease are different from the results for the healthy person.

Suggest an explanation for the difference in the results.

EXAM PAPERS PRACTICE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)

Q6.
Glycogen is stored in the muscles.
Scientists investigated changes in the amount of glycogen stored in the muscles of two 20-year-old male athletes, \mathbf{A} and \mathbf{B}.
Athlete \mathbf{A} ate a high-carbohydrate diet. Athlete \mathbf{B} ate a low-carbohydrate diet.
Each athlete did one 2-hour training session each day.
The graph shows the results for the first 3 days.

(a) (i) Give three variables that the scientists controlled in this investigation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest two variables that would be difficult to control in this investigation.
\qquad
\qquad
\qquad
\qquad
(iii) Describe one way in which the results of Athlete \mathbf{B} were different from the results of Athlete A.
\qquad
\qquad
(b) Both athletes were training to run a marathon.

Which athlete, \mathbf{A} or \mathbf{B}, would be more likely to complete the marathon?
Use information from the graph to explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7.
(a) Complete the equation for photosynthesis.

(b) Scientists investigated how temperature affects the rate of photosynthesis.

The scientists grew some orange trees in a greenhouse.
They used discs cut from the leaves of the young orange trees.
The scientists used the rate of oxygen production by the leaf discs to show the rate of photosynthesis.
(i) The leaf discs did not produce any oxygen in the dark.

Why?
\qquad
\qquad
(ii) The leaf discs took in oxygen in the dark.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) In their investigation, the scientists measured the rate of oxygen release by the leaf discs in the light. The scientists then measured the rate of oxygen uptake by the leaf discs in the dark.

The graph shows the effect of temperature on

- oxygen production in the light
- oxygen production in the light added to oxygen uptake in the dark.

Use the information from the graph to answer each of the following questions.
(i) Describe the effect of temperature on oxygen production in the light.
\qquad
\qquad
\qquad
\qquad
(ii) Explain the effect of temperature on oxygen production in the light when the temperature is increased:
from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
from $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
(d) A farmer in the UK wants to grow orange trees in a greenhouse. He wants to sell the oranges he produces at a local market.
He decides to heat the greenhouse to $35^{\circ} \mathrm{C}$.
Explain why he should not heat the greenhouse to a temperature higher than $35^{\circ} \mathrm{C}$. Use information from the graph in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 12 marks)

Q8.
The graph shows the uptake of carbon dioxide and the release of carbon dioxide by a bean plant on a hot summer's day.

Mass of carbon dioxide taken in from atmosphere per hour, in arbitrary units

(a) At which two times in the day did the rate of photosynthesis exactly match the rate of respiration in the bean plant?

1. \qquad 2. \qquad
(b) The bean plant respires at the same rate all through the 24 hour period.
(i) How much carbon dioxide is released each hour during respiration?
\qquad arbitrary units
(ii) How much carbon dioxide is used by photosynthesis in the hour beginning at 3 pm ?
\qquad
\qquad
Answer = \qquad arbitrary units
(c) Over the 24 hour period, the total amount of carbon dioxide taken in by the bean plant was greater than the total amount of carbon dioxide given out by the bean
plant.
Explain, in detail, why this was important for the bean plant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 5 marks)

Q9.
One type of training exercise involves alternating periods of walking and running.
The graph shows how an athlete's heart rate changed during one 30-minute training session.

(a) (i) The athlete ran 6 times during the 30-minute training session.

Describe the evidence for this in the graph.
\qquad
\qquad
(ii) Immediately after the final run, the athlete rested for a short time before he started to walk again.

For how many minutes did this rest last?
\qquad minutes
(b) The heart rate increases during exercise.

This increase in heart rate increases blood flow to the muscles.
Explain, as fully as you can, why this increase in heart rate is necessary.
\qquad

Q10.

The diagram shows a plant cell from a leaf.

(a) List \mathbf{A} gives the names of three parts of the cell.

List \mathbf{B} gives the functions of parts of the cell.
Draw a line from each part of the cell in List \mathbf{A} to its function in List \mathbf{B}.

List A Parts of the cell

Absorbs light energy to make food

Cytoplasm

Strengthens the cell

Chloroplast

Controls the activities of the cell
(b) Respiration takes place in the cell.

Draw a ring around the correct answer to complete the sentence.

	energy All cells use respiration to release
oxygen.	

sugar.

Q11.

The table shows the volume of blood flowing through different organs at three levels of exercise.

Organ(s)	Volume of blood flowing through organ(s) in $\mathbf{c m}^{\mathbf{3}}$ per minute		
	Light exercise	Moderate exercise	Heavy exercise
Gut	1100	600	300
Kidneys	900	600	250
Brain	750	750	750
Heart muscles	350	750	1000
Skeletal muscles	4500	12500	22000
Skin	1500	1900	600
Other	400	500	100
Total	$\mathbf{9 5 0 0}$	$\mathbf{1 7 6 0 0}$	$\mathbf{2 5 0 0 0}$

(a) (i) Which organ has a constant flow of blood through it?
\qquad
(ii) Which organ has the greatest reduction in the volume of blood supplied during heavy exercise compared with light exercise?
\qquad
(iii) What proportion of the blood flows through the heart muscle during heavy exercise?
\qquad
(b) The volume of blood flowing through the skeletal muscles increases greatly during exercise.

Give two ways in which the body brings about this increase.

1. \qquad
\qquad
2. \qquad
\qquad
(c) During exercise, the concentration of carbon dioxide in the blood increases.

Explain what causes this increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.
Muscles need energy during exercise.
Draw a ring around the correct answer in parts (a) and (b) to complete each sentence.
(a) (i) The substance stored in the muscles and used during exercise is

(b) The table shows how much energy is used by two men of different masses when swimming at different speeds.

Speed of swimming in	Energy used in kJ per hour

metres per minute	34 kg man	70 kg man
25	651	1155
50	1134	2103

(i) When the 34 kg man swims at 50 metres per minute instead of at 25 metres per minute,

the extra energy he uses each hour is | 36 kJ. |
| :--- |
| 483 kJ. |
| 948 kJ. |

(ii) When swimming at 50 metres per minute, each man's heart rate is faster than when swimming at 25 metres per minute.

A faster heart rate helps to supply the muscles with more | carbon dioxide. |
| :--- |
| glycogen. |
| oxygen. |.

(iii) During the exercise the arteries supplying the muscles would

constrict.
dilate.
pump harder.

(1)
(c) When a person starts to swim, the breathing rate increases.

Give one way in which this increase helps the swimmer.
\qquad
\qquad

Q13.
The diagram shows the human circulation system.

(a) (i) Give the letter of one blood vessel that is an artery. \square
(ii) Give the letter of one blood vessel that carries oxygenated blood. \square
(b) During exercise, the heart rate increases.

Explain, as fully as you can, why this increase is necessary.
\qquad

Q14.
Lactic acid production during exercise affects an athlete's performance.
Explain why lactic acid is produced during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 2 marks)

Q15.

The diagrams show four types of cell, A, B, C and \mathbf{D}.
Two of the cells are plant cells and two are animal cells.

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.

A and B

A and D

C and D \square
(ii) Which part is found only in plant cells?

Draw a ring around one answer.
(b) (i) Which cell, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is adapted for swimming? \square
(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis?
(c) Cells A, B, C and D all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

osmosis
 photosynthesis
 respiration

Q16.

This question is about what happens during decay.
Draw a ring around the correct word to complete each sentence.

(a) After living things die, they are decayed by | animals. |
| :--- |
| microorganisms. |
| plants. |

(b) Decay happens faster when there is plenty of oxygen and conditions are $\quad \begin{aligned} & \text { cold. } \\ & \text { dry. } \\ & \text { moist. }\end{aligned}$

(c) During decay carbon dioxide is produced by \quad| osmosis. |
| :--- |
| respiration. |
| photosynthesis |
| |

(d) Decay releases mineral salts into the soil.

These mineral salts are absorbed by plant | leaves. |
| :--- |
| roots. |
| stems. |

(Total 4 marks)

Q17.

An athlete did a 6-month training programme.
The graph shows the effect of the same amount of exercise on his heart rate before and after the training programme.

(a) (i) What was the maximum heart rate of the athlete during exercise before the training programme?
\qquad beats per minute
(ii) Give two differences between the heart rate of the athlete before and after the training programme.

After the training programme
Difference 1 \qquad

Difference 2 \qquad
\qquad
(b) Which two substances need to be supplied to the muscles in larger amounts during exercise?

Tick (\checkmark) two boxes.

Q18.
An athlete carried out a 6-month training programme.
Graph 1 shows the effect of the same amount of exercise on his heart rate before and after the training programme.

(a) (i) Use Graph 1 to find the heart rate of the trained athlete 5 minutes after the start of the exercise.

Heart rate $=$ \qquad beats per minute

The stroke volume of the heart is the volume of blood pumped out of the left side of the heart in one heart beat.

Graph 2 shows the relationship between the stroke volume and the heart rate before and after the athlete did the training programme.

(ii) The cardiac output is defined as
cardiac output $=$ heart rate \times stroke volume
Calculate the cardiac output of the trained athlete 5 minutes after the start of the exercise. Use your answer to part (a)(i), and information from Graph 2.

Show clearly how you work out your answer.
\qquad
\qquad
Cardiac output $=$ \qquad cm^{3} blood per minute
(b) Graph 1 shows that, for the same amount of exercise, the heart of the trained athlete was beating more slowly than it did before the training programme.

Use information from Graph 2 to explain why.
\qquad
\qquad
\qquad
\qquad
(c) An increased cardiac output will provide more oxygen and more glucose to the working muscles.

Explain how this helps the athlete during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q19.

(a) The table shows the effect of exercise on the action of one person's heart.

	At rest	During exercise
Heart rate in beats per minute	72	165
Volume of blood leaving the heart in each beat in cm^{3}	75	120
Heart output in cm^{3} per minute	5400	

(i) Calculate the heart output for this person during exercise.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Answer = \qquad cm^{3} per minute
(ii) During exercise, more oxygen is carried to the working muscles.

Explain why this is helpful during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give two other changes in the body that help to increase the amount of oxygen delivered to the working muscles during exercise.

1. \qquad
\qquad
2. \qquad
\qquad

Q20.
Many people who are overweight try slimming programmes.
A research study evaluated four different slimming programmes over 6 months.
Scientists selected a group of 40 people for each slimming programme and a control group.

Each of the five groups was matched for age, gender and mass.
The graph shows the results of the study.

Key: - Mean loss in mass of group

Adapted from British Medical Journal, 2006, volume 332, pages 1309-1314.
(a) Give two control variables that were used in this study.

1. \qquad
2. \qquad
(b) Give two conclusions that can be drawn from the results of this study.
3. \qquad
\qquad
4. \qquad
\qquad
(c) The costs of the four programmes were:

- Atkins book cost $£ 3$
- Rosemary Conley classes cost $£ 140$ for 6 months
- Weight Watchers classes cost $£ 170$ for 6 months
- Twice-daily Slim-Fast meal replacements cost £240 for 6 months.

Use this information and the graph to answer this question.
Which is the most cost effective of the four programmes?

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(d) Some slimming programmes include daily exercise.

Explain how daily exercise helps a person to lose mass.
\qquad
\qquad
\qquad
\qquad

Q21.

(a) The diagrams show cells containing and surrounded by oxygen molecules.

Oxygen can move into cells or out of cells.

Into which cell, A, B, C or D, will oxygen move the fastest?

Write your answer, A, B, C or D, in the box. \square
(b) Draw a ring around the correct word to complete each sentence.

(ii) Cells need oxygen for $\quad \begin{aligned} & \text { breathing } \\ & \text { photosynthesis } \\ & \text { respiration }\end{aligned}$.
(iii) The parts of cells that use up the most oxygen are the $\begin{aligned} & \text { membranes } \\ & \text { mitochondria } \\ & \text { nuclei }\end{aligned}$.
(iv) Some cells produce oxygen in the process of $\quad \begin{aligned} & \text { diffusion } \\ & \text { photosynthesis } \\ & \text { respiration }\end{aligned}$.

Q22.
The heart pumps blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest.
The blood pressure was measured in an artery and in a vein.

(a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?

Blood vessel \qquad
Give two reasons for your answer.
Reason 1 \qquad
\qquad
Reason 2 \qquad
(b) Use information from the graph to answer these questions.
(i) How many times did the heart beat in 15 seconds?
(ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad
\qquad
Heart rate = \qquad beats per minute
(c) During exercise, the heart rate increases. This supplies useful substances to the muscles and removes waste materials from the muscles at a faster rate.
(i) Name two useful substances that must be supplied to the muscles at a faster rate during exercise.

1. \qquad
2. \qquad
(ii) Name one waste substance that must be removed from the muscles at a faster rate during exercise.
\qquad

Q23.
(a) The concentration of sulfate ions was measured in the roots of barley plants and in the water in the surrounding soil.

The table shows the results.

	Concentration of sulfate ions in mmol per $\mathbf{d m}^{3}$
Roots of barley plants	1.4
Soil	0.15

Is it possible for the barley roots to take up sulfate ions from the soil by diffusion?
Draw a ring around your answer. Yes / No
Explain your answer.
\qquad
\qquad
\qquad
(b) Some scientists investigated the amounts of sulfate ions taken up by barley roots in the presence of oxygen and when no oxygen was present.

The graph below shows the results.

(i) The graph shows that the rate of sulfate ion uptake between 100 and 200 minutes, without oxygen, was 0.4 arbitrary units per minute.

The rate of sulfate ion uptake between 100 and 200 minutes, with oxygen, was greater.

How much greater was it? Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Answer \qquad arbitrary units
(ii) The barley roots were able to take up more sulfate ions with oxygen than without oxygen.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)

Q24.
The bar chart shows the amount of water lost from the body of a student on two different days.

The student ate the same amount of food and drank the same amount of liquid on the two days. The temperature of the surroundings was similar on the two days.

(a) The total volume of water lost on day 1 was $3250 \mathrm{~cm}^{3}$.

How much water was lost on day 2? Show all your working
cm^{3}
(b) The student did much more exercise on one of the days than on the other.

On which day did he do more exercise? Day \qquad
Give two reasons for your answer.

1. \qquad
\qquad
2. \qquad
\qquad
(c) (i) Which one of these is a chemical reaction that produces water in the body?

Put a tick (\vee^{\prime}) in the box next to your choice.

Breathing

Osmosis \square
Respiration

Sweating \square
(ii) How does sweating help the body?
\qquad
\qquad
(iii) If the body loses more water than it gains, it becomes dehydrated.

The concentration of the solution surrounding the body cells increases.
This causes the cells to lose water.
By which process do cells lose water?
Put a tick (V^{\prime}) in the box next to your choice.

Breathing \square

Osmosis \square

Respiration \square

Sweating \square

Q25.

The diagram shows the human breathing system.

(a) On the diagram, label structures \mathbf{B} and \mathbf{C}.

Choose your answers from the list in the box.

| alveoli \quad diaphragm | rib | trachea |
| :---: | :---: | :---: | :---: |

(b) (i) Which letter, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows the site of gas exchange? \qquad
(ii) Which one of the following gases has a higher concentration in exhaled air than in inhaled air?

Draw a circle around one answer.

```
carbon dioxide
nitrogen
oxygen
```

Q26.
The diagram represents the human blood circulation system.

Key: \longrightarrow Direction in which blood flows
(a) A, B, C and D are blood vessels.
(i) Give the letter of one blood vessel that is an artery. \qquad
(ii) Give the letter of one blood vessel that is a vein.
(b) A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise. The results are shown in the graph.

(i) What was the student's heart rate before the exercise began?
\qquad
(ii) How long was it before the student's heart rate reached 124 beats per minute?
\qquad minutes
(c) Which of the following parts of the blood carries most oxygen?

Draw a circle around one answer.
plasma red blood cells white blood cells
(Total 5 marks)

Q27.

A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise and also during recovery.

The results are shown in the graph.

(a) Describe, in as much detail as you can, the changes in heart rate between 0 and 14 minutes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) How do arteries supplying the leg muscles alter the rate of blood flow through them during exercise?
\qquad
\qquad
(c) Explain how an increase in heart rate helped the student during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q28.
The table shows the amounts of energy used in running and in walking at different speeds by people of different body masses.

Activity	Energy used in kilojoules per hour			
	$\mathbf{3 4} \mathbf{~ k g}$ person	$\mathbf{5 0} \mathbf{~ k g}$ person	$\mathbf{7 0} \mathbf{~ k g}$ person	$\mathbf{9 0} \mathbf{~ k g}$ person
Running, 9 km per hour	1530	1850	2770	3700
Running, 11 km per hour	2140	2560	3860	5120
Running, 16 km per hour	2980	3570	5380	7140
Walking, 3 km per hour	530	670	1010	1340

Walking, 5 km per hour	740	880	1340	1760
Walking, 7 km per hour	1030	1240	1850	2480

(a) Describe two patterns you can see in the data.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Our breathing rate is much higher when running than when walking.

Explain the advantage of this to the body.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q29.
The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium which is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Glucose is added to the fermenter at \mathbf{B}.

Explain why glucose is added.
\qquad
\qquad
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Explain what causes the fermenter to heat up.
\qquad
\qquad
(d) It is important to prevent microorganisms other than Fusarium from growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
(ii) Suggest two ways in which contamination of the fermenter by microorganisms could be prevented.

1. \qquad
\qquad
2. \qquad
\qquad
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

Name of amino acid	Amount of amino acid per $\mathbf{1 0 0} \mathbf{g}$ in mg			Daily amount needed by a $\mathbf{7 0} \mathbf{~ k g ~ h u m a n ~}$ in mg
	Mycoprotein	Beef	Wheat	840
Lysine	910	1600	300	910
Methionine	230	500	220	980
Phenylalanine	540	760	680	490
Threonine	610	840	370	

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.
Remember to include a conclusion in your evaluation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 11 marks)

Q30.
A runner might drink a special 'sports drink' at intervals during a marathon race. The table shows the substances present in a sports drink.

Substance	Percentage
Water	
Sugar	5.0
lons	0.2

(a) Complete the table to show the percentage of water in the sports drink.
(b) The runner sweats and also breathes heavily during the race.
(i) Why does the runner need to sweat?
\qquad
(ii) Which two substances in the table are lost from the body in sweat?
\qquad
(iii) Which substance in the table is lost from the body during breathing?
\qquad
(c) How does the sugar in the sports drink help the athlete during the marathon?
\qquad
\qquad

Q31.
Complete the table by writing the correct process next to its description.
Choose your answers from the list in the box

breathing	diffusion	digestion	osmosis	respiration

Description	Process
Moving air in and out of the lungs	
The movement of particles of a substance from high to low concentration	
The release of energy from glucose	

(Total 3 marks)

Q32.
Paula is training for a marathon. When she runs, her heart beats faster than it does when she is resting.

Complete the sentences, using words from the box.

blood		breathe	carbon dioxide	glucose
	heat	nitrogen	oxygen	respire

When she is running, Paula's muscle activity increases. To do this, her muscle cells
\qquad at a faster rate to give her more energy. Her muscles need to be supplied with \qquad and \qquad more quickly. Her heart beats faster to increase the flow of \qquad which carries the products \qquad and
\qquad away from her muscles.

Q33.
A student's breathing was monitored before and after vigorous exercise. The student breathed in and out through a special apparatus. The graphs show the changes in the
volume of air inside the apparatus. Each time the student breathed in, the line on the graph dropped. Each time the student breathed out, the line went up.

Before exercise

After exercise
(a) How many times did the student breathe in per minute:
before exercise; \qquad
after exercise? \qquad
(b) On each graph, the line $\mathbf{A}-\mathbf{B}$ shows how much oxygen was used. The rate of oxygen use before exercise was $0.5 \mathrm{dm}^{3}$ per minute. Calculate the rate of oxygen use after exercise.
\qquad
\qquad
\qquad
Rate of oxygen use after exercise $=$ \qquad dm^{3} per minute
(c) The breathing rate and the amount of oxygen used were still higher after exercise, even though the student sat down to rest. Why were they still higher?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q34.
A person did five different activities in turn. These activities needed increasing amounts of energy. For each activity two measurements were made. These were the rate of contraction of the left ventricle and its stroke volume (the volume of blood pumped at each beat). From these measurements the cardiac volume was calculated.

Some of these results are shown in the table and the bar chart.

Activity	Rate of contraction of left ventricle in beats per minute	Cardiac output in $\mathbf{c m}^{\mathbf{3}}$ per minute
Sitting upright	68	5500
Slow walking	8000	

Moderate walking	98	12000
Fast walking	130	17500
Running	150	19000

(a) (i) Describe how a person can count the rate of beating of the left ventricle.
\qquad
\qquad
(ii) Calculate the rate of ventricle contraction in beats per minute when the person was walking slowly. Show clearly how you work out your final answer.
\qquad
\qquad
\qquad
\qquad
Rate of ventricle contraction \qquad beats per minute.
(iii) The pattern of results for stroke volume shows an anomalous result when the person is running. In what way is it anomalous?
\qquad
\qquad
(iv) There was a change in cardiac output when the person's movement changed from fast walking to running. How did the heart produce this change?
\qquad
\qquad
(b) Over a period of time, regular exercise can strengthen the heart muscle. This change in the heart muscle enables a person to run for longer before lactic acid build up occurs. Explain the reason for this.
\qquad
\qquad
\qquad
\qquad

Q35.

Regular exercise is important, as it helps to maintain an efficient supply of blood to the muscles, the heart and the lungs. This is helped by an increase in the heart rate during exercise.

Explain why it is necessary for the heart rate to increase during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Mark schemes

Q1.
(a) (i) rate of chemical reactions (in the body)
(ii) any two from:

- heredity / inheritance / genetics
- proportion of muscle to fat or (body) mass
allow (body) weight / BMI
- age / growth rate
- gender
accept hormone balance or environmental temperature ignore exercise / activity
(b) (i) 77
correct answer with or without working gains 2 marks allow 1 mark for 70 / 56 or 1.25 or 5
(ii) increase exercise
accept a way of increasing exercise
reduce food intake
accept examples such as eat less fat / sugar
allow go on a diet or take in fewer calories
ignore lose weight
ignore medical treatments such as gastric band / liposuction

Q2.
(a) LHS - glucose

RHS - water
allow $\mathrm{H}_{2} \mathrm{O} / \mathrm{H} 2 \mathrm{O}$
(b) so the earthworms' body temperature would change to $20^{\circ} \mathrm{C}$
(c) (i) 56 or 55 or 54
if incorrect answer given accept 60-5 for 1 mark or 60-6 for $\mathbf{1}$ mark
(ii) one-tenth of answer to (c)(i) eg 5.5
(at $10^{\circ} \mathrm{C} /$ lower temperature):
lower rate of respiration
allow chemical reactions slower or enzymes less active ignore breathing
do not allow anaerobic
worms less active / worms release less energy / worms use less energy
(d) (i) anomalous result / not in line with other data / does not fit the pattern
(ii) more representative / more reliable / can check 'repeatability' / see if get similar values / identify anomalies
ignore valid / more fair
ignore reproducible
ignore 'to remove' anomalies
do not accept more accurate or more precise

Q3.
(a) in yeast:
'it' equals yeast
makes alcohol / makes CO^{2} / does not make lactic acid
do not allow uses / involves alcohol / CO^{2}
(b) (i) any two from:
allow amount of yeast

- volume of yeast / suspension
- volume of sugar / solution
- concentration of sugar
amount of sugar = max 1 for sugar
- temperature
(total) volume = 1 mark if no other volume ignore concentration of yeast
(ii) most / more CO^{2} given off with fructose or
'it' equals fructose

```
faster CO2 production
or
faster respiration
                allow faster fermentation
                do not allow aerobic respiration
so (rate of) alcohol production will be greatest / more (with fructose)

Q4.
(a) (i) carbon dioxide
accept \(\mathrm{CO}_{2} / \mathrm{CO} 2\)
do not accept \(\mathrm{CO}^{2}\)
(ii) fermentation / respiration ignore aerobic / anaerobic
(b) most/more gas (produced)
do not allow 'a lot'
or
allow alternative descriptions
liquid level lowest
ignore name of gas
(c) (i) repeat
ignore reference to average or mean
or
compare with results of others
(ii) if reliable - get same / similar results
allow same pattern but not pattern alone
or
allow no anomalies
small range
ignore anomalies unqualified
(d) use smaller intervals
can be implied
around \(30^{\circ} \mathrm{C}\) or between \(25^{\circ} \mathrm{C}\) and \(35^{\circ} \mathrm{C}\) do not allow for temperatures below \(25^{\circ} \mathrm{C}\) above \(35^{\circ} \mathrm{C}\) ignore references to sensitivity or precision (of thermometer) NB do at \(28^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}\) and \(32^{\circ} \mathrm{C}=2\) marks

\section*{Q5.}
(a) person with muscle disease:
allow reverse argument for healthy person
any three from:
NB all points are comparative except peak (point 3)
allow use of two approximate figures as a comparison
- higher resting rate or higher at start
- when exercise starts / then increases more / more rapidly
accept description eg rise .... fall
- peaks (then falls)
- levels off later than healthy person
- higher rate during exercise
if no other marks awarded allow 1 mark for 'it's higher'
- greater range
(b) (i) oxygen
accept adrenaline
accept \(\mathrm{O}_{2}\)
do not accept O, O2 or O²
(ii) cannot release sugar / glucose (from glycogen)
or
cannot store glucose / sugar (as glycogen)
for energy / respiration / cannot store energy
ignore aerobic / anaerobic

Q6.
(a) (i) any three from:
if diet given as answer = max 2
- age (of athlete)
- gender (of athlete)
- starting concentration of glycogen
- type / intensity of exercise
- length of exercise period
- number of training sessions
if none of these points gained amount of exercise = \(\mathbf{1}\) mark
- time interval between exercise sessions
- exercise at same time of day
if last four points not awarded allow time (for exercise) for 1 mark
ignore references to amount of energy ignore they are both athletes
(ii) any two from:
- intensity of exercise
- amount of exercise between sessions
- starting concentration of glycogen
- fitness / health
- metabolic rate / respiration rate
- amount / mass of muscle / physique
- aspects of diet qualified, eg amount of food eaten do not accept amount of carbohydrate if no other marks awarded allow height / mass / weight for 1 mark
(iii) (B has) less glycogen
\(h e=B\)
or (B's glycogen) fell more
accept use of approximate figures
or (B's glycogen) built up less
allow other correct observations from graph eg \(A\) is lower at
end of first session
ignore rate of fall
(b) athlete \(\mathbf{A}\) (no mark)
to gain full marks 'more' must be given at least once
athlete \(\mathbf{A}\) had more glycogen / \(\mathbf{B}\) has less (only if A chosen to complete marathon) accept converse argument for \(\boldsymbol{B}\)
(glycogen / glucose) used in respiration ignore anaerobic
and either energy used for movement / muscle action / to run or
(extra) glycogen \(\rightarrow\) (more) glucose

Q7.
(a) LHS: carbon dioxide AND water
in either order
accept \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\)
allow CO 2 and H 2 O
if names given ignore symbols
do not accept \(\mathrm{CO}^{2} / \mathrm{H}^{2} \mathrm{O} / \mathrm{Co} / \mathrm{CO}\)
ignore balancing

RHS: sugar(s) / glucose / starch / carbohydrate(s)
accept \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\)
allow C 6 H 12 O 6
do not accept \(\mathrm{C}^{6} \mathrm{H}^{12} \mathrm{O}^{6}\)
(b) (i) light is needed for photosynthesis
or
no photosynthesis occurred (so no oxygen produced)
(ii) oxygen is needed / used for (aerobic) respiration
full statement
respiration occurs or oxygen is needed for anaerobic respiration gains 1 mark
(c) (i) (with increasing temperature) rise then fall in rate
use of figures, ie
max. production at \(40^{\circ} \mathrm{C}\)
or maximum rate of 37.5 to 38
(ii) \(\quad \underline{25-35^{\circ}} \mathrm{C}\)
either faster movement of particles / molecules / more collisions or particles have more energy / enzymes have more energy
or temperature is a limiting factor over this range
\(40-50^{\circ} \mathrm{C}\)
denaturation of proteins / enzymes
ignore denaturation of cells
ignore stomata
(d) above \(35^{\circ} \mathrm{C}\) (to \(40^{\circ} \mathrm{C}\) ) - little increase in rate or \(>40^{\circ} \mathrm{C}\) - causes decrease in rate
so waste of money or less profit / expensive
because respiration rate is higher at \(>35^{\circ} \mathrm{C}\)
or
respiration reduces the effect of photosynthesis

Q8.
(a) 7.15 to 7.45 am and 7.15 to 7.45 pm
both required, either order accept in 24 hr clock mode
(b) (i) 11
(ii) 32.5 to 33
allow answer to (b)(i) + 21.5 to 22
(c) any two from:
- more photosynthesis than respiration
- more biomass / carbohydrate made than used
allow more food made than used
- so plant able to grow / flower accept plant able to store food

Q9.
(a) (i) 6 peaks in heart rate accept 6 increases / spikes or goes very high 6 times allow heart rate increases each time he runs
(ii) \(2.5 / 2^{1 ⁄ 2} 2\)
allow 2 minutes 30 seconds do not accept 2.3 / 2:3 / 2.30
(b) more / faster / a lot must be stated at least once for full marks
(more) oxygen supplied / needed
allow less anaerobic (respiration)
or (more) aerobic respiration
or prevents oxygen debt
(more) glucose / sugar / food supplied / needed ignore feeding
(more) energy needed / released allow energy produced / made
(more) carbon dioxide / heat / lactic acid removed (from muscles) or more cooling or less lactic acid formed

Q10.
(a)


1 mark for each correct line mark each line from left hand box
two lines from left hand box cancels mark for that box
(b) energy

Q11.
(a) (i) brain
(ii) skin
(iii) \(1 / 25\) or \(4 \%\) or 0.04 or 1 in 25 or \(1: 25\) or 1 out of 25
\[
\text { allow } \frac{1000}{25000}
\]
(b) any two from:
- increased / high heart rate / pulse rate do not allow pumps more blood unqualified
- dilation / widening of arteries / arterioles (to skeletal muscles)
accept vasodilation unqualified

EXAM PAPERS PRACTICE
do not accept reference to veins / capillaries
or
less blood flow to other organs
- increased stroke volume / described
(c) ignore references to breathing
more respiration / description
or
more energy required or to provide more energy
respiration / process described \(\rightarrow \mathrm{CO}_{2}\)
do not accept anaerobic respiration
\(\mathrm{CO}_{2}\) diffuses into blood

Q12.
(a) (i) glycogen
(ii) respiration
(b) (i) 483 kJ
(ii) oxygen
(iii) dilate
(c) supplies more / a lot of oxygen or removes more carbon dioxide or release more energy / faster respiration

\section*{Q13.}
(a) (i) \(B\) or \(D\)
(ii) A or B
(b) any four from:
more / faster must be implied at least once for full marks
- increased blood (flow)
ignore reference to breathing
- (more) oxygen supplied or aerobic respiration
allow less anaerobic (respiration) or and prevents oxygen debt
- (more) glucose / sugar / food supplied ignore feeding
- (higher rate of) respiration
- (more) energy needed / released allow made
- (more) carbon dioxide removed
- (muscles) doing (more) work or muscles contracting
- remove heat / cooling
- remove lactic acid or less lactic acid formed

Q14.
insufficient / no oxygen available
for (just) aerobic respiration
or
respires anaerobically

\section*{Q15.}
(a) (i) C and D
(ii) cell wall
(b) (i) A
(ii) D
(c) respiration

Q16.
(a) microorganisms
(b) moist
(c) respiration
(d) roots

Q17.
(a) (i) 150
(ii) any two from:
accept correct use of numbers accept pulse rate
- lower resting rate
- lower rate during exercise
- recovers faster after exercise
allow a general statement about lower rate if neither of the first two points given
(b) glucose
oxygen

Q18.
(a) (i) 120
(ii) 11760 or correct answer from candidate's answer to (a)(i)
correct answer with or without working
if answer incorrect
\(120 \times 98\) or
candidate's answer to (a)(i) \(\times\) corresponding SV gains 1 mark
if candidate uses dotted line / might have used dotted line(bod) in (a)(i) and (a)(ii) no marks for (a)(i) but allow full ecf in (a)(ii) eg \(140 \times 88=12320\) gains 2 marks
(b) trained athlete has higher stroke volume / more blood per beat
same volume blood expelled with fewer beats
or for same heart rate more blood is expelled
(c) increased aerobic respiration
or
decreased anaerobic respiration
allow correct equation for aerobic respiration accept don't have to respire anaerobically
increased energy supply / need
less lactic acid formed
or to breakdown lactic acid or less \(\mathrm{O}_{2}\)-debt
can do more work or can work harder / faster / longer
accept muscle contraction for work
or less fatigue / cramp / pain

Q19.
(a) (i) 19800
for correct answer ignore working or lack of working \(165 \times 120\) but no answer / wrong answer = 1 mark (ignore extras)
(ii) any two from:
- for respiration ignore oxygen debt
- energy released allow energy produced
- prevents anaerobic respiration
- prevents build-up of lactic acid
(b) any two from:
- increased breathing rate(*)
- increased depth of breathing or deep breathing(*)
\({ }^{*}\) )more breathing is max 1 mark
ignore increase in heart rate
allow heavier breathing
do not allow harder breathing
- dilation of arteries / vasodilation
allow blood vessels dilate
do not allow veins / capillaries dilate
- blood diverted from elsewhere
ignore name of organ

Q20.
(a) any two from:
- age
- gender
- mass
- number in group
- time
(b) any two from:
- \(\quad\) highest (mean) mass loss on Rosemary Conley or Rosemary Conley most effective
- least (mean) mass loss in control group or mean
(c) (Atkins)
costs least
mass loss very similar to other diets or second highest mass loss or as effective as other diets
(d) any two from:
- (exercise) increases metabolic rate / respiration ignore sweating
- (exercise) needs / uses energy / calories allow burns fat / calories do not accept energy for respiration
- (this) energy comes from food / fat
- less food / energy/ calories converted to fat

\section*{Q21.}
(a) A
(b) (i) diffusion
(ii) respiration
(iii) mitochondria
(iv) photosynthesis

Q22.
(a) A
no mark - can be specified in reason part
if \(B\) given = no marks throughout
if unspecified plus two good reasons \(=1\) mark
high(er) pressure in A
allow opposite for \(B\)
do not accept 'zero pressure' for \(B\)
pulse / described in A
accept fluctuates / 'changes'
allow reference to beats / beating
ignore reference to artery pumping
(b) (i) 17
(ii) 68
accept correct answer from candidate's (b)(i) \(\times 4\)
(c) (i) oxygen / oxygenated blood
allow adrenaline
ignore air

\section*{glucose / sugar \\ extra wrong answer cancels eg sucrose / starch / glycogen / glucagons / water allow fructose as an alternative to glucose ignore energy ignore food}
(ii) carbon dioxide \(/ \mathrm{CO}_{2}\) / lactic acid
allow CO 2 / \(\mathrm{CO}^{2}\)
ignore water

Q23.
(a) No
no mark
if yes max 1 for correct statement
diffusion is down the concentration gradient accept by diffusion ions would leave the root
to enter must go up / against the concentration gradient or concentration higher in the root or concentration lower in the soil
(b) (i) 0.9 or 3.25
for correct answer with or without working if answer incorrect 1.3 or their rate - 0.4 gains 1 mark or 130-40 or 90 gains 1 mark
(ii) (uptake) by active transport
requires energy
more energy from aerobic respiration
or
more energy when oxygen is present

Q24.
(a) 4000
award both marks for correct answer, irrespective of working \(1500+2000\) + 500 gains 1 mark
(b) day 2 (no mark)
any two from:
max 1 mark if correct day not identified or if no day given
- more (water in) breath / breathing
- more (water in) sweat / sweating
accept a lot of sweating
- less (water in) urine
if no other marks awarded allow 1 mark for more water lost on day 2
(c) (i) respiration
(ii) cools / removes heat owtte
ignore 'maintains body temperature' unqualified
(iii) osmosis

Q25.
(a) \(\mathrm{B}=\) rib

C = diaphragm
(b) (i) D
allow lower case
(ii) carbon dioxide

Q26.
(a) (i) A or C
allow lower case
(ii) B or D
allow lower case
(b) (i) 60
(ii) 4
(c) red blood cells

Q27.
(a) any three from:
- rose rapidly (during exercise) / use of approximate figures
- then more slowly (during exercise)
accept rate (of increase) slows down
- to max 126 / at 5 minutes / end of exercise
- rapid fall (during recovery) or use of approximate numbers
- then less rapid fall / use of approximate numbers
- returned to resting rate ( 60 bpm ) by 11 minutes
(b) arteries dilate / widen
accept muscle in wall relaxes
(c)
any faur from:
- muscles using more energy ar more energy released
- muscles respire faster
- supply more oxygen
- supply more glucose / sugar
- remove more \(\mathrm{CO}_{2}\)
- remove lactic acid
- remove heat / to cool
do not accept energy produced
allow for aerobic respiration
ur to prevent anaerobic respiration
'more' needed ONCE only for full marks

Q28.
(a) increased speed
or harder exercise / running
\(\rightarrow\) increased need / use / loss of energy
allow further you run / walk the more energy you need
increased mass / bigger \(\rightarrow\) increased use of energy
(b) any three from:
- supply / using (more / enough) oxygen
or get (more) oxygen in blood(*)
- remove (more) \(\mathrm{CO}_{2}\left({ }^{*}\right)\)
- doing (more) work

Or
using (more) energy allow produce energy(*)
(*)need reference to 'more' ONCE only for full marks \(_{\text {m }}\)
- for respiration
- prevent build up of lactic acid
or prevent oxygen debt
or prevent anaerobic (respiration)
or allow aerobic (respiration)

Q29.
(a) circulation / mixing / described
or
temperature maintenance
supply oxygen
do not allow oxygen for anaerobic respiration
or
for aerobic conditions
or
for faster respiration
(b) any one from:
- energy supply / fuel
or use in respiration

EXAM PAPERS PRACTICE
do not allow just food / growth
ignore reference to aerobic / anaerobic
- material for growth
or to make mycoprotein
(c) (heat / energy) from respiration
allow exothermic reactions
allow description eg breakdown of glucose / catabolism ignore metabolism ignore aerobic / anaerobic
(d) (i) any one from:
- compete (with Fusarium) for food / oxygen or reduce yield of Fusarium
- make toxic waste products
or they might cause disease / pathogenic or harmful to people / Fusarium do not allow harmful unqualified
(ii) any two from:
- steam / heat treat / sterilise fermenter (before use)
not just clean
allow sterilisation unqualified for 1 mark
- steam / heat treat / sterilise glucose / minerals / nutrients /
water (before use)
not just use pure glucose
- filter / sterilise air intake
- check there are no leaks
(e) any three from:
- beef is best or beef is better than mycoprotein(*)
- mycoprotein mainly better than wheat(*)
- more phenylalanine in wheat than in mycoprotein(*)
allow equivalent numerical statements(*)
- but no information given on other amino acids / costs / foods
overall conclusion:
statement is incorrect
or
it would be the best source for vegetarians
or
for given amino acids, beef is the best source
or
three foods provide insufficient data to draw a valid conclusion

Q30.
(a) 94.8
(b) (i) to cool (the body) / maintain (body) temperature do not accept let out heat
(ii) water and ions
(iii) water ignore \(\mathrm{CO}_{2}\), and vapour
(c) any two from:
used in respiration
provides energy
(energy) needed for movement / running / muscle action

Q31.
in correct sequence:
breathing
diffusion
respiration

Q32.
(a) respire
oxygen / glucose
glucose / oxygen

Q33.
(a) (before exercise) - 9 to 11 and (after exercise) - 12 or 13 both correct
(b) 0.75 to 0.90
ignore working or lack of working
eg. \(2.35-1.55\) or \(\frac{(2.35-1.0) \times 60}{100}\) or other suitable figures for 1 mark
(c) any four from:
still need to remove extra carbon dioxide
still need to remove heat / to cool
(some) anaerobic respiration (in exercise)
lactic acid made (in exercise)
oxygen needed to break down lactic acid or suitable reference to oxygen debt lactic acid broken down to \(\mathrm{CO}_{2}\) and water or lactic acid changed into glucose

Q34.
(a) (i) count the pulse or count beats in artery in wrist neck or feel the pulse or take the pulse or find the pulse accept use of heart monitor or heart meter
(ii) 80

2 marks for correct answer
\(1 f\) answer incorrect allow 1 mark for showing 8000 divided by 100 or indicating cardiac output divided by stroke volume
(iii) Increased activity stroke volume
falls / gets less / should get higher / reach a peak accept does not increase or changes from \(134 \mathrm{~cm}^{3}\) to 127 cm \({ }^{3}\)
(iv) 1 ncreased / more ventricle contractions accept heart beat faster or it beats faster or more powerful contractions
(b) (stronger heart muscle) increases cardiac output or increases stroke volume accept pumps more blood (per beat) or pumps blood faster ignore heart bigger
so more (oxygenated) blood can be sent to muscles accept more oxygen sent to muscles

Q35.
any four from:
more energy / respiration required
accept it prevents / reduces anaerobic respiration or less / no lactic acid reference to increase must be made, but only needed once, provided inference is clear for remainder of points. accept 'delivered more quickly' for 'increase'
increase oxygen uptake into blood (in lungs)
increase oxygen delivery to muscles
increase glucose delivery to muscles
increase removal of heat from muscles or increase delivery of heat to skin
increase removal of carbon dioxide from muscles
increase removal of carbon dioxide from blood (in lungs)

Q1.
(a) The volume of blood pumped out of the left ventricle at each beat was measured for a person during six different activities. These activities showed an increasing energy demand, with rest requiring the least energy and rowing a boat the most. The results of these measurements are shown on the bar chart.

(i) The pulse rate was also measured for the person during the same activities. The table shows the results that were obtained.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Activity } & \begin{tabular}{c} 
Pulse rate in \\
beats per minute
\end{tabular} \\
\hline Rest & 70 \\
Writing & 85 \\
Cleaning the floor & 100 \\
Wallpapering & 120 \\
Walking fast & 132 \\
Rowing a boat & 153 \\
\hline
\end{tabular}

On the graph paper below draw a bar chart of the results obtained for the measurements of the pulse rate.

(ii) Undertaking activities with increasing energy demand has an effect on the volume of blood pumped from the left ventricle (per beat) and on the pulse rate. What do the bar charts show these effects to be? Use only information shown in the bar charts in your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) The pulse rate changed when the activity changed. Explain the reason for this.
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q2.
The diagram shows an enlargement of structure \(\mathbf{D}\).


The arrows show the direction of the gases exchanged in this structure. Name gas \(\mathbf{X}\) and gas \(\mathbf{Y}\).

X \(\qquad\)
Y \(\qquad\)
(Total 2 marks)

Q3.
Person A and Person B measured their pulse rates over a period of five minutes. For one minute of this time they exercised by stepping on and off a box. At other times they sat still. The graph shows the results for Person A.

(i) What does the graph tell you about the changes in the pulse rate of Person \(\mathbf{A}\) within the five minute period?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) What was the pulse rate of Person \(\mathbf{A}\) at the end of the five minute period?
(iii) The table shows the results obtained for Person B.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Time \\
in minutes
\end{tabular} & \begin{tabular}{c} 
Pulse rate per \\
minute
\end{tabular} \\
\hline 0 & 68 \\
\hline 1 & 68 \\
\hline 2 & 110 \\
\hline 3 & 96 \\
\hline 4 & 80 \\
\hline 5 & 68 \\
\hline
\end{tabular}

Plot these results on the graph.

Q4.
(a) During respiration, sugar is oxidised to release energy. Complete the equation for respiration.

Sugar + \(\qquad\) \(=\) \(\qquad\) \(+\) \(\qquad\) + energy
(b) The photograph below shows an athlete using an exercise machine. The machine can be adjusted to vary the rate at which the athlete is required to work.


The athlete's heart rate and breathing rate were measured at different work rates.
The table below shows the results which were obtained.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
WORK RATE \\
\((\mathrm{J} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c} 
HEART RATE \\
(beats/min.)
\end{tabular} & \begin{tabular}{c} 
BREATHING RATE \\
(breaths/min.)
\end{tabular} \\
\hline 0 & 86 & 9.6 \\
\hline 60 & 106 & 10.0 \\
\hline 80 & 112 & 10.4 \\
\hline 100 & 122 & 10.4 \\
\hline 120 & 135 & 11.4 \\
\hline 140 & 143 & 14.5 \\
\hline 160 & 156 & 15.8 \\
\hline 200 & 174 & 30.5 \\
\hline
\end{tabular}

Plot the data on the graph paper below.
EXAM PAPERS PRACTICE

(c) Explain, as fully as you can, the advantages to the body in the change in breathing and heart rates.
\(\qquad\)
(d) This increase in the rate of heart-beat is a response to a stimulus. For this response suggest:
(i) the stimulus;
(ii) the co-ordinator; \(\qquad\)
(iii) the effector.

Q5.
The diagram below shows the mass of carbon involved each year in some of the processes in the carbon cycle.

(a) Complete the equation for plant respiration.

(b) (i) Calculate the mass of carbon removed from the atmosphere each year. (Show your working.)

Answer \(\qquad\) billion tonnes
(ii) Calculate the percentage of this total which is removed by the photosynthesis of land plants. (Show your working.)

Answer \(\qquad\) \%
(iii) Calculate the net gain of carbon by the atmosphere in one year. (Show your working.)
\(\qquad\)

Marathon runners are recommended to have a high carbohydrate diet prior to a race. Three athletes tried out three dietary regimes prior to a marathon race.

These three dietry regimes were as follows.
Athlete A Up to 7 days before the race
7 days before the race - Prolonged extreme physical activity
6-3 days before the race - Protein and fat diet; no carbohydrate
2 and 1 days before the race
Large carbohydrate intake
Athlete B Up to 5 days before race
Normal mixed diet
5 days before the race - Prolonged extreme physical activity
4-1 days before the race - Large carbohydrate intake
Athlete C Up to 4 days before the race
4-1 days before the race - Large carbohydrate intake
The graph below shows the effect of each of these dietary regimes on glycogen levels in the athletes' muscles

(a) (i) What is the immediate effect of extreme physical activity on the glycogen content of muscles?
\(\qquad\)
\(\qquad\)
(ii) Describe how this effect occurs.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) (i) Evaluate the three regimes as preparation for a marathon race.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Suggest a possible explanation for the different effects of the three regimes.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q7.
A student breathed out into an empty breathing bag five times.


After breathing out five times the volume of air in the bag was measured.
The volume was \(3000 \mathrm{~cm}^{3}\).
(a) Complete the following sentences.

The air the student breathed in would contain more \(\qquad\) than the air the student breathed out.

The air the student breathed out would contain more \(\qquad\) than the air the student breathed in.
(b) The student then did some exercise for two minutes. The volume breathed out in five breaths was again measured. This time there was \(9000 \mathrm{~cm}^{3}\) of air in the bag.

What does this tell you about the effect of exercise on breathing?
\(\qquad\)
\(\qquad\)
(c) (i) Name the chemical process that releases energy when it takes place in the cells of the body.
\(\qquad\)
(ii) Name the substances produced by this process.
\(\qquad\) and \(\qquad\)
(iii) Explain as fully as you can why this process has to take place more rapidly during exercise.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q8.
(a) Explain, as fully as you can, why respiration has to take place more rapidly during exercise.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) During exercise the process of respiration produces excess heat. Explain how the body prevents this heat from causing a rise in the core (deep) body temperature.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q9.
In an investigation four groups of athletes were studied. The maximum rate of oxygen consumption for each athlete was measured and the mean for each group was calculated. The athletes then ran 10 mile races and the mean of the best times was calculated for each group. The results are shown in the table below.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GROUP OF \\
ATHLETES
\end{tabular} & \begin{tabular}{c} 
MAXIMUM RATE OF \\
OXYGEN CONSUMPTION \\
\(\left(\mathrm{cm}^{3}\right.\) per kg per min)
\end{tabular} & \begin{tabular}{c} 
BEST TIME IN \\
10 MILE RACE \\
(minutes)
\end{tabular} \\
\hline A & 78.6 & 48.9 \\
\hline B & 67.5 & 55.1 \\
\hline C & 63.0 & 58.7 \\
\hline D & 57.4 & 64.6 \\
\hline
\end{tabular}
(i) What is the relationship between maximum rate of oxygen consumption and time for a 10 mile race?
\(\qquad\)
\(\qquad\)
(ii) Suggest an explanation for this relationship.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q10.
The graph shows the effect of increasing the carbon dioxide content of the inhaled air on:
- the number of breaths per minute;
- the total volume of air breathed per minute.

-O Total volume of air breathed per minute (litres)
-0- Number of breaths per minute
(i) Describe the effect of increasing the percentage of carbon dioxide in the inhaled air on the total volume of air breathed.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Suggest why the total volume of inhaled air is not directly proportional to the number of breaths per minute.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q11.
The diagram shows part of the breathing system in a human.

(a) Use words from the list to label the parts on the drawing.
alveoli bronchiole bronchus diaphragm trachea (windpipe)
(b) Where in the lungs does oxygen enter the blood?
\(\qquad\)
(c) Which process in cells produces carbon dioxide?
\(\qquad\)

Q12.
Read the passage.


\section*{Glutton up a gum tree}

Along the banks of the Cygnet River on Kangaroo Island, the branches of the dying gum trees stretch out like accusing fingers. They have no leaves. Birds search in vain for nectarbearing flowers.

The scene, repeated mile upon mile, is an ecological nightmare. But, for once, the culprit is not human. Instead, it is one of the most appealing mammals on the planet - the koala. If the trees are to survive and provide a food source for the wildlife such as koalas that depend on them, more than 2000 koalas must die. If they are not removed the island's entire koala population will vanish.

Illegal killing has already started. Worried about soil erosion on the island, some farmers have gone for their guns. Why not catch 2000 koalas and take them to the mainland? "Almost impossible," says farmer Andrew Kelly. "Four rangers tried to catch some and in two days they got just six, and these fought, bit and scratched like fury."

The diagram shows the flow of energy through a koala.
The numbers show units of energy.

(i) Calculate the percentage of the food intake which is converted into new tissues for growth. Show your working.
\(\qquad\)
(ii) Give three different ways in which the koala uses the energy released in respiration.
1. \(\qquad\)
2. \(\qquad\)
\(\qquad\)
3. \(\qquad\)

\section*{(3)}
(Total 5 marks)

\section*{Q13.}

Fermentation of sugar by yeast produces carbon dioxide.
The graph shows the effect of temperature on the production of carbon dioxide by fermentation.

Volume of carbon dioxide collected in 10 minutes in \(\mathrm{cm}^{3}\)

(a) By how much did the volume of carbon dioxide collected change when the temperature was raised from \(30^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) ?
\(\qquad\) \(\mathrm{cm}^{3}\)
(b) Complete the sentences to explain the shape of the curve between \(\mathbf{X}\) and \(\mathbf{Y}\).

Raising the temperature \(\qquad\) the speed of the reacting particles.

These particles collide more \(\qquad\) and more \(\qquad\) .

Q14.
(a) The graph shows how the mass of oxygen you breathe in changes as you climb up a mountain.


Describe, in as much detail as you can, how the mass of oxygen in one breath changes as you climb from sea level to 3000 m .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) People who live high up in mountainous areas have more red blood cells than people who live at sea level. The graph below shows how the number of red blood cells changes with height above sea level.

(i) How many more red blood cells does a person living at 3000 m above sea level have than someone living at sea level? Show clearly how you work out your answer.
\(\qquad\)
\(\qquad\)
Increase in number of red blood cells = \(\qquad\) millions per \(\mathrm{m}^{3}\)
(ii) What is the advantage of having more red blood cells?
\(\qquad\)
\(\qquad\)
(Total 6 marks)

\section*{Q15.}

The temperature at the surface of the skin can be measured by using a technique called thermography.

In this technique, areas with higher temperature appear as a different colour on the thermographs.

The drawings below show the results of an investigation in which thermographs were taken from a person before and after exercise.


Key
Higher temperature areas
Normal temperature areas
Describe and explain, as fully as you can, the effects of exercise on skin temperature.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(Total 3 marks)

\section*{Q16.}

The graph shows the concentration of carbon dioxide in the air in a greenhouse full of tomato plants, measured over a period of 24 hours.

(a) Explain why the concentration of carbon dioxide in the air in the greenhouse increased between \(\mathbf{X}\) and \(\mathbf{Y}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(b) Explain why the concentration of carbon dioxide in the air in the greenhouse decreased between \(\mathbf{Y}\) and \(\mathbf{Z}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(Total 4 marks)

\section*{Q17.}

The diagram shows a water balance for a girl who spends most of the day working at a desk. It is not complete.
(a) Complete the diagram by writing in the volume of sweat produced.

(b) The next day she spent much of the day training, doing many different types of exercise.

State how each of the following would change and why it would be different from the previous day.
(i) The amount of water given off as sweat.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) The amount of water breathed out.
\(\qquad\)
\(\qquad\)
\(\qquad\)
(iii) The amount of urine passed, if she had the same water intake as on the previous day.
\(\qquad\)
\(\qquad\)
(c) Which organ controls the amount of water in the body?
\(\qquad\)

\section*{Q18.}

The diagram shows the human breathing system.
(a) Complete the labels (i) and (ii).

(b) Complete the following sentence.

When we breathe out, the mixture of gases which leaves the air sacs contains more \(\qquad\) and less \(\qquad\) than the mixture of gases which enters the air sacs.

\section*{Q19.}
(i) What is the name of the process which takes place in living cells in your body and which releases energy from oxygen and glucose?
\(\qquad\)
(ii) Name the two products of the process in part (i).
and \(\qquad\)

Q20.
(a) (i) Complete the word equation for the process of aerobic respiration.
Glucose \(+\rightarrow\) carbon dioxide + water
(ii) Which organ removes carbon dioxide from your body?
\(\qquad\)
(b) Use names from the box to complete the two spaces in the passage.
\begin{tabular}{|lllll|}
\hline carbon dioxide & lactic acid & nitrogen & oxygen & water \\
\hline
\end{tabular}

Anaerobic respiration can occur when an athlete does vigorous exercise.
This is because there is not enough \(\qquad\) in the body.

The product of anaerobic respiration is \(\qquad\) .

Q21.
Oxygen from our lungs is carried, by our blood, to cells in our body where aerobic respiration takes place.
(i) Complete the two spaces to balance the chemical reaction for aerobic respiration.
\[
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
\]
(ii) Name the substance with the formula \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\).
\(\qquad\)
(iii) Name the structures in the cytoplasm of our cells where aerobic respiration takes place.
\(\qquad\)

Q22.
A young athlete trains and this makes her heart work harder. The table shows part of her
training record.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Time measured in weeks from \\
the start of training
\end{tabular} & 0 & 8 & 16 & 24 & 32 & 40 \\
\hline \begin{tabular}{l} 
Resting pulse rate measured in \\
pulses per minute
\end{tabular} & 75 & 69 & 66 & 63 & 61 & 60 \\
\hline
\end{tabular}
(i) Give two changes to her heart resulting from this training.
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
(ii) The graph shows a smooth curve drawn to match the data from her training record.


Use the graph:
(A) to estimate her resting pulse rate, in pulses per minute, after 18 weeks of training;
\(\qquad\)
(B) to predict her resting pulse rate, in pulses per minute, if she continues her training until the end of the year.

\section*{Q23.}
(a) The air you breathe in and the air you breathe out are different.

Use the names of gases from this box to complete the three spaces.
\begin{tabular}{|ccccc|}
\hline argon & carbon dioxide & nitrogen & oxygen & water vapour \\
\hline
\end{tabular}

Compared to the air you breathe in, the air you breathe out contains:
- more \(\qquad\)
- more \(\qquad\)
- less
(b) The process of aerobic respiration takes place in your cells.
(i) Complete the space in the word equation for this process.
\(\qquad\) + oxygen \(\rightarrow\) carbon dioxide + water
(ii) Complete the space to give the main energy transfer which takes place in this process.
chemical energy \(\rightarrow\) \(\qquad\) energy
(iii) What is the name of the organ where oxygen from the air passes to your blood?
\(\qquad\)
(c) The athlete is taking part in vigorous exercise.


Complete the two spaces in the passage.
The cells in our muscles respire anaerobically during vigorous exercise. This results in \(\qquad\) debt and the production of \(\qquad\) acid.
(Total 8 marks)

\section*{Q24.}
(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

(iii) What sort of weather may cause the cereal crop to wilt?
\(\qquad\)
(b) Describe the process of transpiration in plants.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q25.
The man uses energy as he walks along. Energy is released in the cells in his body.
(i) What name is given to this process which occurs in his cells?

Circle the correct name.

\section*{circulation reproduction respiration transpiration}
(ii) What gas is brought to his cells by the blood?
\(\qquad\)
(iii) What gas is released by his cells and carried away by the blood?
\(\qquad\)

Q26.
(a) Respiration is a process which takes place in living cells. What is the purpose of respiration?
\(\qquad\)
\(\qquad\)
(b) (i) Balance the equation for the process of respiration when oxygen is available.
\(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\)
\(\mathrm{O}_{2} \rightarrow\)
\(\mathrm{CO}_{2}+\)
\(\mathrm{H}_{2} \mathrm{O}\)
(ii) What is the name of the substance in the equation with the formula \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) ?
\(\qquad\)
(c) Oxygen is absorbed through the alveoli in the lungs.
(i) How are the alveoli adapted for this function?
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Name the gas which is excreted through the alveoli.
\(\qquad\)
(d) (i) What is the name of the process of respiration when oxygen is not available?
\(\qquad\)
(ii) Describe the process of respiration which takes place in human beings when oxygen is not available and give an effect.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(Total 10 marks)

\section*{Q27.}

Plants need chemical energy for respiration and for active transport.
(i) Write a balanced chemical equation which represents the process of respiration in plants.
\(\qquad\)
(ii) Describe the process of active transport in the root hair cells of plants.
\(\qquad\)

Q28.
The table shows the percentage of some gases in the air a boy breathed in and out.
\begin{tabular}{|c|c|c|}
\hline Gases & \begin{tabular}{c} 
Air \\
breathed in
\end{tabular} & \begin{tabular}{c} 
Air \\
breathed out
\end{tabular} \\
\hline carbon dioxide & \(0.04 \%\) & \(4.0 \%\) \\
\hline oxigen & \(20.0 \%\) & \(16.0 \%\) \\
\hline water vapour & \(1.0 \%\) & \(6.0 \%\) \\
\hline
\end{tabular}
(a) What happens in the lungs to change the levels of oxygen and carbon dioxide in this way?

Oxygen \(\qquad\)
\(\qquad\)
\(\qquad\)
Carbon dioxide \(\qquad\)
\(\qquad\)
\(\qquad\)
(b) Compare the percentage of water vapour in the air breathed out with the percentage in air breathed in.
\(\qquad\)

Q29.
Diagram 1 shows the main features of human blood circulation.

(a) What changes in the composition of blood occur in the lungs?
\(\qquad\)
\(\qquad\)
\(\qquad\)

Diagram 2 shows how the circulation of blood changes between rest and exercise.


Rate of supply of blood to parts of the body ( \(\mathrm{cm}^{3} / \mathrm{min}\) ) when at rest and during exercise.
(b) (i) Use the information from Diagram 2 to complete the table below.

Parts of the body to be included:
Digestive System
Skin

\section*{Brain}

\section*{Arteries of Heart}

(ii) What happens to the rate of supply of blood to the whole body with exercise?
(You should make full use of the information provided.)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Q30.
(a) Breathed-out air is different from breathed-in air.

The two pie-charts show the percentages of different gases in each.
Complete the second pie-chart, using the information from the table.

AIR YOU BREATHE IN


AIR YOU BREATHE OUT

\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Gases in breathed-out air } \\
\hline nitrogen & \(79 \%\) \\
\hline oxygen & \(16 \%\) \\
\hline carbon dioxide & \(4 \%\) \\
\hline other gases & \(1 \%\) \\
\hline
\end{tabular}
(b) Use the information above to complete the following sentences.

The air you breathe out contains more \(\qquad\) than the air you breathe in.

The air you breathe out contains less \(\qquad\) than the air you breathe in.
(Total 5 marks)

Q31.
As they go higher up a mountain, mountaineers take less oxygen into their bodies with each breath.


This is shown in the table below.
\begin{tabular}{|l|l|c|}
\hline & MILLIGRAMS OF OXYGEN & MILLIGRAMS OF OXYGEN \\
& TAKEN INTO LUNGS WITH & TAKEN INTO BLOOD WITH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & EACH NORMAL BREATH & EACH NORMAL BREATH \\
\hline \begin{tabular}{c} 
At bottom of \\
mountain
\end{tabular} & 300 & 60 \\
\hline \begin{tabular}{c} 
At top of \\
mountain
\end{tabular} & 150 & 30 \\
\hline
\end{tabular}
(a) At the top of the mountain, they only take half as much oxygen into their lungs with each breath as they did at the bottom.

How does this affect the amount of oxygen that gets into their blood with each breath?
\(\qquad\)
\(\qquad\)
(b) Why do the cells in the mountaineers' bodies need oxygen?
\(\qquad\)
\(\qquad\)
(a) (i) The table shows an athlete's breathing rate after the end of a race.

The results can be put onto a graph.
Three of the points are already plotted.
Plot the other points shown in the table.
Then draw the graph.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Time after end of \\
race \\
(minutes)
\end{tabular} & \begin{tabular}{c} 
Breathing rate \\
(litres per second)
\end{tabular} \\
\hline 0 & 4 \\
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline 3 & 1 \\
\hline 4 & 1 \\
\hline 5 & \\
\hline
\end{tabular}

(ii) What is the athlete's breathing rate \(1 / 2\) (half) a minute after the end of the race?
\(\qquad\)
(b) One of the reasons for breathing is to get rid of carbon dioxide from your body. Choose words from the list to complete the sentences below about how your body does this.
blood heart kidneys lungs urine

Carbon dioxide gets out of your body from your \(\qquad\)
The carbon dioxide is carried to this part of your body by your \(\qquad\)
(c) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two
races.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Use the information in the box to explain your answer to (i).
\begin{tabular}{|lrlll} 
aerobic respiration & glucose + oxygen & \(\ldots . . . .\). & carbon dioxide + water \\
anaerobic respiration & glucose & \(\ldots . . . .\). & lactic acid \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

Q33.
(a) The table shows an athlete's breathing rate after the end of a race.

Use the information shown in the table to draw a line graph.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Time after end of race \\
(minutes)
\end{tabular} & \begin{tabular}{c} 
Breathing rate \\
(itres per second)
\end{tabular} \\
\hline 0 & 4 \\
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline 3 & 1 \\
\hline 4 & 1 \\
\hline 5 & 1 \\
\hline
\end{tabular}

(b) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two races.
\(\qquad\)
\(\qquad\)
(ii) Use the information in the box to explain your answer to (i).
\begin{tabular}{|lrll|}
\hline aerobic respiration & glucose + oxygen & \(\ldots . . .\). & carbon dioxide + water \\
anaerobic respiration & glucose & \(\ldots . . . .\). & lactic acid \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
(c) Explain why the athlete breathes at a faster rate than normal for two minutes after finishing a 100 metres race.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Mark schemes}

Q1.
(a) (i) plotting values for pulse rates;

2 marks- minus 1 mark for each error to a maximum of 2
Accept values if plotted on blood volume bar chart
Non-horizontal tops to bars producing variable values \(=1\) error
If drawn as a line graph =1 mark maximum

(ii) Either
volume of blood went up then fell;
Accept went to a maximum then fell
pulse rate increased (steadily);
Accept went up steadily or kept going up

\section*{Or}
at first or with low activity or with moderate activity both pulse and volume increased;

Accept activity up to wall- papering with more activity pulse continued to increase but volume fell;
(b) Any two of
with increased activity greater muscle use or greater respiration;
need more glucose or oxygen;
Accept more sugar
heart beat faster;
Do not accept more air
Accept more blood needed or blood flows faster If 'more' or equivalent stated once it can be accepted elsewhere by implication

Q2.
X - oxygen
accept \(\mathrm{O}_{2}\)
\(\mathbf{Y}\) - carbon dioxide
accept \(\mathrm{CO}_{2}\)

Q3.
(i) with exercise rate rises;
accept between 1-2 minutes rate rises
(when exercise stops) rate falls slowly; accept gentle fall or steady fall for answers which just describe a rise then a fall allow one mark only as an alternative to the first two points
(ii) 86 (per minute);
(iii) plotting points;
deduct one mark for each error to max of two
if 68 wrongly plotted count as one error (ignore the quality of the line)


Q4.
(a) oxygen;
carbon dioxide; ) allow symbols
water
each for 1 mark
(b) graph with reasonable vertical scales;
accurate plotting of all points (ignore lines) and labelling lines
histogram - must be coded
gains 3 marks
(c) 6 of:
during exercise the level of \(\mathrm{CO}_{2}\) (in the blood) rises;
increased breathing to remove excess \(\mathrm{CO}_{2}\);
increased oxygen supply to muscles;
or increased breathing takes in more \(\mathrm{O}_{2}\)
or increased heart rate takes more \(\mathrm{O}_{2}\) to muscles;
increased supply of sugar to muscles;
increased respiration rate;
enable faster rate of energy release;
reference to lactic acid (allow even though not on syllabus)/ \(\mathrm{O}_{2}\) debt;
to avoid cramp;
anaerobic reference;
reference to removal of 'heat';
(d) high carbon dioxide concentration;
brain/central nervous system;
heart muscles (both)

Q5.
(a) glucose/sugar water
for 1 mark each
(b) (i) 204 for 1 mark
(ii) 49 gains 2 marks (incorrect answer, but correct method gains 1)
(iii) 3 gains 2 marks (incorrect answer, but correct method gains 1)

Q6.
(a) (i) reduced sharply
for 1 mark
(ii) converted to glucose which is respired to produce energy
(allow answers in terms of glucagon)
gains 3 marks
(b) (i) athlete A's was most effective since resulted in highest muscle glycogen level on day of race for energy release during race
for 1 mark each
(ii) e.g. excess carbohydrate stored as glycogen rather than fat in short term particularly if glycogen stores depleted
for 1 mark each

Q7.
(a) oxygen, carbon dioxide or water (vapour) for 1 mark each
(b) idea of more air per breath/deeper breaths for 1 mark
(c) (i) respiration for 1 mark
(ii) carbon dioxide, water
for 1 mark each

Q8.
(a) more energy needed,
for increased muscular activity
for 1 mark each
(b) increased sweat production, evaporation of sweat cools body, vasodilation OWTTE, more heat loss (by radiation)
for 1 mark each

Q9.
(i) the higher the rate of oxygen consumption, the shorter the time taken to complete
for 1 mark
(ii) the faster oxygen is taken into the blood, the faster energy can be released in the muscles, and the faster the athlete can run
for 1 mark each

Q10.
(i) increase in \(\mathrm{CO}_{2}\) concentration leads to increase in volume of air inhaled increase of \% carbon dioxide has little effect over most of range / large increase when \% carbon dioxide > 5.6 \%
each for 1 mark
(ii) idea that
depth of breathing changes at low \% carbon dioxide, in crease in \% \(\mathrm{CO}_{2}\) results in volume of each breath increasing without increase / little increase in number of breaths
each for 1 mark

Q11.
(a) trachea / windpipe bronchus alveoli diaphragm for 1 mark each
(b) alveoli / air sacs (reject capillaries)
for one mark
(c) respiration
for one mark

Q12.
(i) \(0.25 \times 100 / 25\)
gains 1 mark
but
1\%
gains 2 marks
(ii) muscle contraction / limb movement / moving around / chewing heartbeat / breathing / internal muscle activity maintaining body temperature / keeps body warm active uptake synthesising substances (reject growth)
any three for 1 mark each

Q13.
(a) 11
accept 10.5-11.5
(b) ideas of
increase / rises
frequently / often
energetically / violently

Q14.
(a) falls
from 0.25
to 0.19
but by 0.06 gains two marks
if neither figure given, accept steadily / at constant rate for one mark accept mass of oxygen inversely related / negative correlation to height above sea level for 2 marks
(b) (i) 1.8
accept correct readings from graph for (5 and 6.8) if subtraction incorrect for one mark
allow one mark for correct subtraction from incorrect readings
(ii) (blood can carry) more oxygen

\section*{Q15.}
any three from:
heat produced by muscles
during exercise
accept when working
by respiration
(skin) temperature over muscles rises / more blood to skin over muscles
allow vasodilation or arterioles dilate over muscles reject capillaries dilate sweating neutral

\section*{Q16.}
(a) respiration
reject start respiring / respire only at night
no photosynthesis because no light
(b) photosynthesis rate greater than respiration rate

\section*{reject no respiration / photosynthesis only}
photosynthesis since light

Q17.
(a) 850
(b) (i) more
because exercise makes us sweat or work harder
accept to cool the body do not credit body hotter or giving off more heat
(ii) more
because she respires more
accept she breathes (in and out) more or heavier or faster
(iii) less
because (more) water has been lost by sweating or breathing out or other methods
accept arguments about conservation of water
(c) kidney

Q18.
(a) (i) trachea
accept windpipe
(ii) (left) lung or lungs
do not credit right lung
(b) carbon dioxide or water vapour
do not credit just 'water'
oxygen
answers in terms of used air or fresh air or of temperature differences are not acceptable

Q19.
(i) (aerobic) respiration
do not credit anaerobic respiration
accept cellular respiration
(ii) carbon dioxide and water (vapour)
both required
do not credit heat

Q20.
(a) (i) oxygen
do not credit air
(ii) lung(s)
do not credit blood or nose or windpipe alone but accept as a neutral answer if included with lungs
(b) oxygen
lactic acid
both words required

Q21.
(i) 6 in both spaces
do not credit if any formula has been altered
(ii) glucose
allow fructose or dextrose
(iii) mitochondria
accept organelles

Q22.
(i) any two from
* (heart) more muscular
accept bigger
* (heart) more powerful
accept more efficient accept stronger
(ii) * pauses longer between (heart) beats accepts beats more slowly accept heart rate decreases
* less fast around the heart recovers more quickly not just 'heart healthier' do not credit pulse rate slower

Q23.
(a) more water vapour accept more water
more carbon dioxide
less oxygen
(b) (i) glucose
accept carbohydrate(s)
accept sugar(s)
(ii) heat
or thermal
or internal kinetic
(iii) lungs
accept alveoli / alveolus
do not credit air sacs
do not credit capillaries
both neutral if included with lungs
(c) oxygen
accept \(\mathrm{O}_{2}\)
lactic

Q24.
(a) (i) photosynthesis
(ii) respiration
do not credit combustion do not credit decay
(iii) dry
accept hot or windy or drought
(b) any three from
* evaporation (of water)
or loss of water vapour
* (mostly) from the leaf / leaves
do not credit incorrect reference to leaves
* through the stomata
accept through each stoma
accept through the stomas(sic)
* causing a pull
or causing an increase in osmotic potential (at the top of the plant)
or causing an increase in water potential (at the top of the plant) or causing a decrease in osmotic pressure (at the top of the plant)
* (so that) water moves up (through the plant)
do not credit water vapour moves up through the plant
* as the transpiration stream
* water enters through roots (and goes up plants)

Q25.
(i) respiration
(ii) oxygen or \(\mathrm{O}_{2}\) do not accept \(O\) or \(O^{2}\)
(iii) carbon dioxide or \(\mathrm{CO}_{2}\)
do not accept \(\mathrm{CO}^{2}\)

Q26.
(a) to transfer / provide / give release energy or production of ATP / adenosine triphosphate (molecules) accept to give heat
(b) (i) \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}\)
accept any other
\(n: 6 n: 6 n: 6 n\) ratio
do not credit if any other changes have been made
(ii) glucose
do not credit sugar / sucrose
(c) (i) any two from
large surface
thin (surface)
moist (surface)
(with a good) blood supply
(ii) carbon dioxide
accept water vapour
do not credit just water
(d) (i) anaerobic (respiration)
(ii) any three from
in mitochondria
glucose decomposes / breaks down / reacts
or glucose \(\rightarrow\) lactic acid for (2) marks
to give lactic acid
or breathing hard
or lactic acid \(\rightarrow \mathrm{CO} 2+\) water
causing pain
(leaving an) oxygen debt
(quick) source of energy
(but) less efficient than aerobic respiration
accept less efficient than with oxygen

Q27.
(i) \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}\) energy is neutral
formulae all correct
with no omissions / deletions
correctly balanced
credit 1 mark if the answer is the exact reverse of an incorrect answer for (a)
(ii) and three from
take up of (soluble) substances / ions against the concentration gradient or when the concentration (of the substance / ions) is greater inside the cell / cytoplasm than outside it
through the (semi-permeable) (cell) membrane energy from mitochondria or energy from respiration not just energy

Q28.
(a) oxygen passes from the air/lungs into the body gains 1 mark

\section*{but}
oxygen passes from the air/lungs into the blood gains 2 marks
carbon dioxide passes from the body into the air/lungs gains 1 mark

\section*{but}
carbon dioxide passes from the blood into the air/lungs gains 2 marks
(b) increased/5\% more
gains 1 mark
but
6 times more (in air breathed out)
gains 2 marks

Q29.
(a) idea
\(\mathrm{O}_{2}\) increases
\(\mathrm{CO}_{2}\) decreases
for 1 mark each
(b) (i) reduced unchanged increased digestive system brain skin bone muscles heart and arteries
All (6) correct gains 4 5 correct gains 3 4 correct gains 2
2/3 correct gains 1
Correct wording not needed if unambiguous. No mark if organ repeated.
(ii) more/higher/quicker/faster
gains 1 mark

\section*{but}

7500 more/from 5,000 to 12,500 more
gains 2 marks

\section*{but}

7500 cm³/min more
gains 3 marks
or \(2^{1 / 2}\) times more

Q30.
(a) carbon dioxide in range 2.5-5\%
gains 1 mark

\section*{but}
carbon dioxide closer to \(4 \%\) than to \(3 \%\) or \(5 \%\)
gains 2 marks

\section*{OR}
oxygen in range 15-17.5\%
gains 1 mark

\section*{but}

If 3 sectors drawn and two correctly labelled, award marks and ignore remaining sector
Oxygen and carbon dioxide sectors labelled for 1 mark
(b) carbon dioxide
oxygen
for 1 mark each
Do not allow water vapour.
(Allow correct symbols/formulae)

Q31.
(a) less / low
gains 1 mark
but
(also) half as much or still one fifth of what's breathed in
gains 2 marks
(b) for energy / respiration [credit for movement / to keep warm]
[Do not allow "to live"] for 1 mark

Q32.
(a) (i) points correctly plotted
all correct gains 2 marks
2 correct gains 1 mark
each part of line correctly drawn (i.e. curve + straight line)
for 1 mark each part of line
(ii) 3 (or according to plotted graph)
litres per second
for 1 mark each
(b) lungs blood
for 1 mark each
(c) (i) ideas that
- energy transferred faster in 100 m race
- carbon dioxide produced faster during 1500 m race / more
- carbon dioxide produced for 1 mark each
correct reference to twice / half as fast in either / both cases for a further mark
(ii) • respiration during 100 m race (mainly) anaerobic
- respiration during 1500 m race (mainly) aerobic
- aerobic respiration produced carbon dioxide
- anaerobic respiration produced / lactic acid for 1 mark each

\section*{Q33.}
(a) - appropriate scales (> halfway along each axis)
- all points correctly plotted to better than \(1 / 2\) a square
- lines carefully drawn
(allow point to point in this case)
N.B.
- no mark available for labelling axes
- allow either orientation
for 1 mark each
(b) (i) ideas that
- energy transferred faster in 100 m race (not more energy transferred)
- carbon dioxide produced faster during 1500 m race for 1 mark each
(allow more carbon dioxide produced)
correct reference to twice / half as fast in either / both cases

\section*{for 1 further mark}
(ii) • respiration during 100 m race (mainly) anaerobic
- respiration during 1500 m race aerobic
- aerobic respiration produces carbon dioxide
- anaerobic respiration doesn't produce carbon dioxide / produces lactic acid any two for 1 mark each
(c) ideas that
- there is an oxygen debt / more than normal oxygen needed
- lactic acid needs to be oxidised / combined with oxygen for 1 mark each```

