

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Reactions of ions in aqueous solution 1

CHEMISTRY

Mark Schemes

AQA
AS & A LEVEL
Inorganic Chemistry

For more help, please visit our website www.exampaperspractice.co.uk

EXAM PAPERS F

(a) $Cr(OH)_3 + 3H_2O + 3H^+ \rightarrow [Cr(H_2O)_6]^{3+}$

Can start with $Cr(H_2O)_3(OH)_3$ for each equation
Ignore any unnecessary preliminary preparation of $Cr(OH)_3$ Green / grey-green solid

Mark colours independently from equations

Forms green / purple / ruby / violet solution

ignore shades of colours

Allow green ppt.

Cr(OH) $_3$ + 2H $_2$ O + OH $^-$ → [Cr(H $_2$ O) $_2$ (OH) $_4$] $^-$ Allow with 5 or 6 OH $^-$ provided complex has co–ordination number of 6

Penalise complex ions with incorrect charges overall or if shown on ligand.

Forms green solution

Note that for each equation final complex must be 6 co-ordinate

(b) $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O$ Allow two correct equations via intermediate hydroxide in both cases even if first equation uses OH^- instead of NH_3

Blue (solution)

Mark colours independently from equations

Dark / deep / royal blue solution

 $[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$

pink / red (solution)

Brown / straw / yellow solution

ignore darkens in air / with time

[11]

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[11]

(a) $[Fe(H_2O)_6]^{2+} + 2NH_3 \rightarrow Fe(H_2O)_4(OH)_2 + 2NH_4^+$ Allow equation with OH⁻ provided equation showing formation of OH⁻ from NH₃ given

Green precipitate

$$[Fe(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow FeCO_3 + 6H_2O$$

Green precipitate

effervescence incorrect so loses M4

(b) (i) Colourless / (pale) green changes to pink / purple (solution)

Do not allow pale pink to purple

Just after the end-point MnO₄ is in excess / present

(ii)
$$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

Moles $KMnO_4 = 18.7 \times 0.0205 / 1000 = (3.8335 \times 10^{-4})$ *Process mark*

Moles
$$Fe^{2+} = 5 \times 3.8335 \times 10^{-4} = 1.91675 \times 10^{-3}$$

Mark for $M2 \times 5$

Moles Fe²⁺ in 250 cm³ = $10 \times 1.91675 \times 10^{-3} = 0.0191675$ moles in 50 cm³ Process mark for moles of iron in titration (M3) \times 10

Original conc Fe
$$^{2+}$$
 = 0.0191675 × 1000 / 50 = 0.383 mol dm $^{-3}$
Answer for moles of iron (M4) × 1000 / 50
Answer must be to at least 2 sig. figs. (0.38)

(a) An electron pair on the ligand

Blue precipitate

(b)

Is donated from the ligand to the central metal ion

Dissolves to give a dark blue solution

complex

Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess Reagent must be a compound NOT just an ion

Equations must start from $[Cu(H_2O)_6]^{2+}$ except in part (b) Mark reagent, species and equation independently

ammonia (NH3) (solution) / NaOH

7

$$\begin{split} [\text{Cu}(\text{H}_2\text{O})_6]^{2+} + 2\text{NH}_3 &\rightarrow [\text{Cu}(\text{H}_2\text{O})_4(\text{OH})_2] + 2\text{NH}_4^+ \, / \\ [\text{Cu}(\text{H}_2\text{O})_6]^{2+} + 2\text{OH}^- &\rightarrow [\text{Cu}(\text{H}_2\text{O})_4(\text{OH})_2] + 2\text{H}_2\text{O} \\ &\quad \quad \text{Do not allow OH}^- \text{ for reagent} \\ &\quad \quad \text{Product 1, balanced equation 1} \end{split}$$

Allow either equation for ammonia

2

(b) Reaction 2

Ammonia (conc / xs)

1

2

(c) Reaction 3

Na₂CO₃ / any identified soluble carbonate / NaHCO₃

Do not allow NaCO₃ or any insoluble carbonate but mark on

1

$$[Cu(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CuCO_3 + 6H_2O$$

$$OR \; [Cu(H_2O)_6]^{2+} + Na_2CO_3 \rightarrow CuCO_3 + 6H_2O + 2Na^+$$

$${\sf OR}\; 2[{\sf Cu}({\sf H}_2{\sf O})_6]^{2+} + 2{\sf CO}_3^{2-} \rightarrow {\sf Cu}({\sf OH})_2.{\sf CuCO}_3 + 11{\sf H}_2{\sf O} + {\sf CO}_2$$

OR with NaHCO3

$$[Cu(H_2O)_6]^{2+} + HCO_3^- \rightarrow CuCO_3 + 6H_2O + H^+$$
Product 1. balanced equation 1

2

(d) Reaction 4

Allow any identified soluble chloride

1

2

$$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$$

Product 1, balanced equation 1

[12]

8

(a) Iron(II): green (solution) gives a green precipitate

Apply list principle throughout if extra colours and / or extra observations given. Ignore state symbols in equations.

Not blue-green ppt.

1

$$[Fe(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow FeCO_3 + 6H_2O$$

Must start from [Fe(H₂O)₆]²⁺

Allow equations with Na₂CO₃

1

Iron(III): yellow / purple / brown / lilac / violet (solution) gives a brown / rusty precipitate

1

Effervescence / gas / bubbles

Allow CO2 evolved but not just CO2

1

$$2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2[Fe(H_2O)_3(OH)_3] + 3CO_2 + 3H_2O_3^{2-}$$

1

(b) Copper(II): blue (solution) gives a green / yellow solution OR blue solution (turns) to green / yellow / olive green

Apply list principle throughout if extra colours and / or extra observations given. Ignore state symbols in equations.

1

$$\underline{[Cu(H_2O)_6]^{2+}} + 4CI^- \rightarrow [CuCI_4]^{2-} + 6H_2O$$

Allow equations with HCI

1

Cobalt(II): pink (solution) gives a blue solution OR pink solution turns blue

1

$$[Co(H_2O)_6]^{2+} + 4CI^- \rightarrow [CoCI_4]^{2-} + 6H_2O$$

1

(c) Iron(II): green (solution) gives a green precipitate

Apply list principle throughout if extra colours and / or extra observations given. Ignore state symbols in equations.

1

$$\underline{[\text{Fe}(\text{H}_2\text{O})_6]^{2+}} + 2\text{OH}^- \rightarrow \text{Fe}(\text{H}_2\text{O})_4(\text{OH})_2 + 2\text{H}_2\text{O}$$

Allow equations with NaOH

Chromium(III): green / ruby / purple / violet / red-violet (solution) gives a green solution *OR* green / ruby / purple / violet / red-violet solution turns green *Ignore green ppt.*

$$[Cr(H_2O)_6]^{3+} + 6OH^- \rightarrow [Cr(OH)_6]^{3-} + 6H_2O$$

Allow also with 4 or 5 OH balanced with 2 or 1 waters.

Also allow two correct equations showing $Cr(H_2O)_3(OH)_3$ as intermediate.

1

1

1

1

1

1

1

1

1

1

1

[17]

(d) Al: colourless (solution) gives a white ppt

Apply list principle throughout if extra colours and / or extra observations given. Ignore state symbols in equations.

$$[Al(H_2O)_6]^{3+} + 3NH_3 \rightarrow Al(H_2O)_3(OH)_3 + 3NH_4^+$$

Allow +
$$3OH \rightarrow 3H_2O$$
 if

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
 also

Ag: colourless (solution) remains a colourless solution / no visible change Ignore brown ppt.

$$[Ag(H_2O)_2]^+ + 2NH_3 \rightarrow [Ag(NH_3)_2]^+ + 2H_2O$$

Allow 2 / 3 equations involving Ag₂O or Ag(OH)₂

9 (a) Yellow (solution)

, , ,

Orange solution

$$2CrO_4^{2^-} + 2H^+ \rightarrow Cr_2O_7^{2^-} + H_2O$$
Allow equation with H_2SO_4

(b) Yellow / purple (solution)

Allow orange / brown (solution)

Brown precipitate / solid

$$[Fe(H_2O)_6]^{3+} + 3OH^- \rightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$$

(c) Blue (solution)

Allow pale blue

1

Ignore any reference to blue ppt

1

$$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O$$

Can be in two equations

1

(d) Colourless (solution)

1

White precipitate / solid

Do not allow grey

1

Bubbles / effervescence / gas evolved / given off

Do not allow just CO2

1

$$2[\text{AI}(\text{H}_2\text{O})_6]^{3+} + 3\text{CO}_3{}^{2-} \rightarrow 2\text{AI}(\text{H}_2\text{O})_3(\text{OH})_3 + 3\text{CO}_2 + 3\text{H}_2\text{O}$$

[13]

Electron pair donor

(a)

10

Allow lone pair donor

(b)
$$[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$$

1

(Blue solution) gives a (pale) blue precipitate/solid

M2 only awarded if M1 shows Bronsted-Lowry reaction

1

$$\mbox{(c)} \quad [Cu(H_2O)_6]^{2+} \ + \ 4NH_3 \ \rightarrow \ [Cu(H_2O)_2(NH_3)_4]^{2+} \ + \ 4H_2O$$

Allow formation in two equations via hydroxide

1

(Blue solution) gives a dark/deep blue solution

If (b) and (c) are the wrong way around allow one mark only for each correct equation with a correct observation (max 2/4)

M2 only awarded if M1 shows Lewis base reaction

1

1

(d) (Start with) green (solution)

Page 7 of 20

For more help, please visit our website www.exampaperspractice.co.uk

	Gre	en precipitate of $Fe(H_2O)_4(OH)_2$ / $Fe(OH)_2$ / iron(II) hydroxide	
		Do not allow observation if compound incorrect or not given	
			1
	Slov	vly changes to brown solid	
		Allow red-brown ppt	
		Allow turns brown or if precipitate implied	
		Can only score M3 if M2 scored	
			1
	(Iror	n(II) hydroxide) oxidised by air (to iron(III) hydroxide)	
	(Allow Fe(OH) ₂ oxidised to Fe(OH) ₃ by air $/ O_2$	
		Ignore equations even if incorrect	
		ignore equations even in meetings.	1
(-)	(1)	0(A)/(1 O) 12+ 011 NOLL OLL NILL - 0A)/(1 O) /(OLL) - 0(LL NICL OLL NILL 12+	
(e)	(i)	$2[AI(H_2O)_6]^{3*} + 3H_2NCH_2CH_2NH_2 \rightarrow 2AI(H_2O)_3(OH)_3 + 3[H_3NCH_2CH_2NH_3]^{2*}$	
		For correct AI species	1
		For correct balanced equation	•
		Allow equation with formation of 3[H ₂ NCH ₂ CH ₂ NH ₃] + from 1 mol	
		[AI(H ₂ O) ₆ ³⁺	
		[(1
		White precipitate	
		write precipitate	1
	(ii)	$[Co(H_2O)_6]^{2+} + 3H_2NCH_2CH_2NH_2 \rightarrow [Co(H_2NCH_2CH_2NH_2)_3]^{2+} + 6H_2O$	
			1
		Complex with 3 en showing 6 correct bonds from N to Co	
		Ignore charge	
		Accept N – N for ligand	
		Ignore incorrect H	
		If C shown, must be 2 per ligand	
			1
		Co-ordinate bonds (arrows) shown from N to Co	
		Can only score M3 if M2 correct	
			1
		$4[Co(H_2NCH_2CH_2NH_2)_3]^{2+} + O_2 + 2H_2O \rightarrow 4[Co(H_2NCH_2CH_2NH_2)_3]^{3+} 4OH^{-}$	
		For Co(III) species	
		· o. oq, oposioo	1

For balanced equation (others are possible)

Allow + O_2 + $4H^+ \rightarrow 2H_2O$

If en used can score M4 and M5 only

If Cu not Co, can only score M2 and M3

Allow N₂C₂H₈ in equations

[17]

1

11

(a) Idea that over time / after storage meter does not give accurate readings

Do not accept 'to get an accurate reading' without further qualification.

Allow 'temperature variations affect reading'.

1

(b) $\frac{ [[Fe(H_2O)_5OH]^{2+}(aq)] [H^{+}(aq)] }{ [[Fe(H_2O)_6]^{3+}(aq)] }$

Allow without (aq) symbols.

Need at least one set of square brackets around complex ions

1

(c) pH = -log[H+]

1

[H+] = 0.0240

Do not penalise precision of [H+]

Correct answer scores M1 and M2.

1

 $K_a = (0.0240)^2 / 0.1 = 5.75 \times 10^{-3} \text{ or } 5.76 \times 10^{-3}$

Correct answer without working loses M1 and M2.

Allow 7.58 × 10-3

1

Answer, even if incorrect, given to 3 sig figs

(d) Oxygen (in the air) / O₂

Ignore 'air' or 'the atmosphere' or 'chemicals in soil'.

List principle.

1

(e) 4.0 - 6.9

Do not penalise precision.

Page 9 of 20

[7]

12 (a) Brown ppt/solid

1

1

2

1

1

1

1

1

1

Gas evolved/effervescence

Balanced equation (1)

$$\begin{split} 2[\text{Fe}(\text{H}_2\text{O})_6]^{3+} + 3\text{CO}_3^{2-} &\rightarrow 2\text{Fe}(\text{H}_2\text{O})_3(\text{OH})_3 + 3\text{CO}_2 + 3\text{H}_2\text{O} \\ \textit{Must be stated, Allow CO}_2 \textit{ evolved. Do not allow CO}_2 \textit{ alone} \\ \textit{Correct iron product (1) allow Fe}(\text{OH})_3 \textit{ and in equation} \end{split}$$

(b) White ppt/solid

Colourless Solution

Only award M2 if M1 given or initial ppt mentioned

 $[AI(H_2O)_6]^{3+} + 3OH^- \rightarrow AI(H_2O)_3(OH)_3 + 3H_2O$ $Allow [AI(H_2O)_6]^{3+} + 3OH^- \rightarrow AI(OH)_3 + 6H_2O$ 1

 $AI(H_2O)_3(OH)_3 + 3OH^- \rightarrow [AI(OH)_6]^{3-} + 3H_2O$ Allow formation of $[AI(H_2O)_{6-x}(OH)_x]^{(x-3)-}$ where x = 4,5,6Allow product without water ligands

Allow formation of correct product from $[AI(H_2O)_6]^{3+}$

(c) Blue ppt/solid

(Dissolves to give a) deep blue solution

Only award M2 if M1 given or initial ppt mentioned

$$\begin{split} [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_6]^{2+} + 2\mathsf{NH}_3 &\to \mathsf{Cu}(\mathsf{H}_2\mathsf{O})_4(\mathsf{OH})_2 + 2\mathsf{NH}_4^+ \\ & \quad A \mathsf{Illow} \ [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_6]^{2+} + 2\mathsf{NH}_3 \to \mathsf{Cu}(\mathsf{OH})_2 + 2\mathsf{NH}_4^+ + 4\mathsf{H}_2\mathsf{O} \\ & \quad A \mathsf{Illow} \ \mathsf{two} \ \mathsf{equations:} \ \mathsf{NH}_3 + \mathsf{H}_2\mathsf{O} \to \mathsf{NH}_4^+ + \mathsf{OH}^- \\ & \quad \mathsf{then} \ [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_6]^{2+} + 2\mathsf{OH}^- \to \mathsf{Cu}(\mathsf{OH})_2 + 4\mathsf{H}_2\mathsf{O} \ \mathsf{etc} \end{split}$$

$$\begin{split} \text{Cu}(\text{H}_2\text{O})_4(\text{OH})_2 + 4\text{NH}_3 &\rightarrow [\text{Cu}(\text{H}_2\text{O})_2(\text{NH}_3)_4]^{2+} + 2\text{OH}^- + 2\text{H}_2\text{O} \\ & \text{Allow } [\text{Cu}(H_2\text{O})_6]^{2+} + 4\text{NH}_3 \rightarrow [\text{Cu}(H_2\text{O})_2(\text{NH}_3)_4]^{2+} + 4\text{H}_2\text{O} \end{split}$$

 $[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$

[14]

1

1

1

1

1

1

1

1

1

1

1

1

1

oxidation state of N in NO₂: +4;

oxidation product: oxygen;

(b) copper-containing species: $[Cu(H_2O)_6]^{2+};$

shape: octahedral;

(c) precipitate B: Cu(H₂O)₄(OH)₂ or Cu(OH)₂ or name;

> $[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$ equation:

OR

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

and

 $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(H_2O)_4(OH)_2 + 2H_2O;$

(ii) NH₃ accepts a proton;

(d) (i) identity: [Cu(NH₃)₄(H₂O)₂]²⁺;

colour: deep blue;

equation:

 $Cu(H_2O)_4(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^-;$

Page 1 of 20 For more help, please visit our website www.exampaperspractice.co.uk

	(ii) NH ₃ is an electron pair donor;	1	
(e)	identity: [CuCl ₄] ²⁻ ;	1	
	colour: yellow-green;	1	
	shape: tetrahedral;	1	
(f)	(i) $Is^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$;	1	
	(ii) role of Cu: a reducing agent;	1	r4.77
			[17]

(a) Iron

Heterogeneous; catalyst in a different phase from that of the reactants

Poison; a sulphur compound (allow sulphur)

Poison strongly adsorbed onto active sites/ blocked

Poison not desorbed or reactants not adsorbed or catalyst surface area reduced

(b) Pale green solution

1

Green precipitate formed

1

Insoluble in excess ammonia

1

Equation:

e.g.
$$[Fe(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Fe(H_2O)_4(OH)_2] + 2NH_4^+$$
 Species

1

1

Balance

NB Allow equations with H₂O and OH⁻ if reaction of H₂O with NH₃ also given

Max 4

[9]

15 (a) (i) Deductions:

Ionic (1)

lons not free to move in the solid state (1)

lons free to move when molten or in aqueous solution (1)

Identity of P: Na₂O or sodium oxide (1)

N.B. If a formula given this must be correct

Equation: $Na_2O + H_2O \rightarrow 2 \text{ NaOH (1)}$

5

(ii) <u>Deductions</u>:

Covalent

Intermolecular forces are weak or van der Waals forces, or dipole-dipole

N.B. Any answer including a reference to hydrogen bonding is incorrect

Identity of Q: SO₂ or sulphur dioxide (1)

Equation: $SO_2 + H_2O \rightarrow H_2 SO_3$ (1)

NB Allow max one for SO3

Allow the reverse of each substitution (b)

$$[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$$

Complex ions

1

Balanced

1 Allow partial substitution

1

1

1

1

1

i)
$$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow CoCl_4^{2-} + 6H_2O$$

(ii)

Complex ions

Balanced

or H₂O or NH₃ or C₂O₄² by Cl

1 $[C_0(H_2O)_6]^{2+} + 3C_2O_4^{2-} \rightarrow [C_0(C_2O_4)_3]^{4-} + 6H_2O$ eg.

Complex ions

Balanced

Allow all substitution except

- (i) NH3 by H2O
- (ii) more than 2Cl⁻ substituted for NH₃ or H₂O

eg. (iv)
$$[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$$

Complex ions

Balanced

or H₂O or NH₃ by C₂O₄²⁻ and NH₃ orCl⁻by EDTA⁴⁻

(c) (i) $[Fe(H_2O)_6]^{2+}$ 1

(ii) $Fe(OH)_2$ or $Fe(OH)_2(H_2O)_x$ where x=0 to 4

(iii) Fe^{2+} is oxidised to Fe^{3+} or $Fe(OH)_3$ 1

By oxygen in the air 1