

GCSE OCR Math J560

Proof/Reasoning

Question Paper

"We will help you to achieve A Star"

A, B and C are points on the circumference of a circle, centre O. AOB is a diameter of the circle.

Prove that angle ACB is 90° You must **not** use any circle theorems in your proof.

[4 marks]

[3 marks]

Question 3

n is an integer.

Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

[2 marks]

Prove algebraically that

$$(2n+1)^2 - (2n+1)$$
 is an even number

for all positive integer values of n.

[3 marks]

Question 5

n is an integer greater than 1

Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.

[4 marks]

Question 6

The product of two consecutive positive integers is added to the larger of the two integers.

Prove that the result is always a square number.

[3 marks]

Prove that

$$(2n+3)^2 - (2n-3)^2$$
 is a multiple of 8

for all positive integer values of n.

[3 marks]

Question 8

Prove algebraically that

$$(2n+1)^2 - (2n+1)$$
 is an even number

for all positive integer values of n.

[3 marks]

(i) Factorise
$$2t^2 + 5t + 2$$

(ii) *t* is a positive whole number.

The expression $2t^2 + 5t + 2$ can never have a value that is a prime number.

Explain why.

[3 marks]

Question 10

ABCD is a quadrilateral.

$$AB = CD$$
.

Angle ABC = angle BCD.

Prove that AC = BD.

[4 marks]

A, B, C and D are four points on the circumference of a circle.

AEC and BED are straight lines.

Prove that triangle *ABE* and triangle *DCE* are similar. You must give reasons for each stage of your working.

[3 marks]

Prove that the square of an odd number is always 1 more than a multiple of 4

[4 marks]

Question 13

Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation $x^2 + y^2 = 20$

[5 marks]

Question 14

Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

[4 marks]

Here are the first five terms of an arithmetic sequence.

7 13 19 25 31

Prove that the difference between the squares of any two terms of the sequence is always a multiple of 24

[6 marks]