

IB Maths: AA HL Practice Paper 3

Topic Questions

These practice questions can be used by students and teachers and is Suitable for IB

Maths AA HL Past Papers

Course	IB Maths
Section	Set A
Topic	Practice Paper 3
Difficulty	Medium

Level: IB Maths

Subject: IB Maths AA HL

Board: IB Maths

Topic: Practice Paper 3

Question 1

This question uses De Moivre's theorem to derive an exact form for the value of $\sin \frac{\pi}{5}$	Moivre's theorem to derive an exact form for the	value of $\sin \frac{\pi}{5}$.
--	--	---------------------------------

For a complex number with modulus r=1, De Moivre's theorem is given by

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$

where $n \in \mathbb{Z}^+$ and θ is measured in radians.

a)

Show that the theorem is true for n = 1.

[1 mark]

- b) Consider the case when n=2.
- (i) Expand $(\cos \theta + i \sin \theta)^2$.
- (ii) By equating real parts from both sides of De Moivre's theorem, show that $\cos^2\theta \sin^2\theta = \cos 2\theta$.
- (iii) By equating imaginary parts, write down an identity for $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

[6 marks]

- c) Consider the case when n=3 and let $c=\cos\theta$ and $s=\sin\theta$.
 - (i) Expand $(c+is)^3$.
- (11)

By considering real parts, write down an identity for $\cos 3\theta$ in terms of $\sin \theta$ and $\cos \theta$.

(iii) Use the Pythagorean identity $\cos^2\theta + \sin^2\theta = 1$ to rewrite the identity from part (c)(ii) in terms of $\cos\theta$ only, giving your answer in the form

$$p\cos^3\theta - q\cos\theta = \cos 3\theta$$

where p and q are integers to be found.

[7 marks]

The identity for $\sin 5\theta$ is found by equating the imaginary parts of De Moivre's theorem when n=5, then writing the result in terms of $\sin \theta$ only. The identity is given by

$$\sin 5\theta = 16 \sin^5 \theta - 20 \sin^3 \theta + 5 \sin \theta$$

You may use this identity without proof for the rest of the question.

- d)
- (i)

By substituting $\theta = \frac{\pi}{5}$ into both sides of the identity for $\sin 5\theta$, show that $x = \sin \frac{\pi}{5}$ satisfies the polynomial equation $16x^5 - 20x^3 + 5x = 0$.

(ii)

Showing clear algebraic working, solve the polynomial equation in part (d)(i), giving all your solutions as exact values.

(iii)

Using a sketch of $y = \sin x$ for $0 < x < \frac{\pi}{2}$, explain why $0 < \sin \frac{\pi}{5} < \frac{\sqrt{2}}{2}$.

(iv)

Justifying your choice of solution from part (d)(ii), prove that the exact value of $\sin \frac{\pi}{5}$ is given by

$$\sin\frac{\pi}{5} = \frac{1}{2}\sqrt{\frac{5-\sqrt{5}}{2}}$$

[11 marks]

Question 2

This question explores the sequence of functions $f_n(x) = 1 - x^2 + x^4 \dots + (-1)^n x^{2n}$ on the domain -1 < x < 1 and uses them to find bounds on the value of π .

Consider the sequence of functions given by

$$f_n(x) = 1 - x^2 + x^4 \dots + (-1)^n x^{2n}$$

where $n \in \mathbb{Z}^+$ and -1 < x < 1.

The first three functions in the sequence are given below:

$$f_1(x) = 1 - x^2$$
 $f_2(x) = 1 - x^2 + x^4$ $f_3(x) = 1 - x^2 + x^4 - x^6$

a)

(i)

Write down the function $f_{A}(x)$.

(ii) Use your graphic display calculator to explore the stationary points on the graphs of $y = f_n(x)$ over the domain -1 < x < 1. Hence copy and complete the following table:

n	Number of local maximum points	Number of local minimum points
1		
2		
3		
4		

(iii) Use your table to predict the numbers of each type of stationary point that will occur on the graphs of $y = f_n(x)$ for all odd values of n.

(iv) Use $f_2(x)$ to find the exact coordinates of the stationary points for n=2, stating clearly which coordinates correspond to which types of stationary point.

[9 marks]

As $n \to \infty$, the graph of the limit of the sequence of functions $f_n(x)$ is a smooth curve y = h(x) over the domain -1 < x < 1.

b) (i) By considering $f_n(x)$ as $n \to \infty$ as the infinite geometric series

$$1 - x^2 + x^4 - x^6 + \cdots$$

where -1 < x < 1, use an appropriate series summation formula to show that

$$h(x) = \frac{1}{1+x^2}.$$

(ii) Use your graphic display calculator to sketch, on the same set of axes for -1 < x < 1, the graphs of $y = f_3(x)$, $y = f_4(x)$ and y = h(x).

[6 marks]

c) Show that the area under the curve y = h(x) between x = 0 and x = 1 is equal to $\frac{\pi}{4}$ square units.

[3 marks]

d)

overestimate.

By considering the sketch from part (b)(ii), state with a reason which out of $y = f_3(x)$ or $y = f_4(x)$ would provide an underestimate of the area in part (c) when integrated between 0 and 1, and which would provide an

(ii) Calculate the values of $\int_0^1 f_3(x) dx$ and $\int_0^1 f_4(x) dx$, showing your working and giving your answers as exact fractions.

(iii) Hence use the results above to give a lower and upper bound on π , giving your answer in the form $a < \pi < b$, a and b are correct to 2 decimal places.

[8 marks]

Starting from the result that

$$1 - x^2 + x^4 - x^6 + \dots = \frac{1}{1 + x^2},$$

derive the Maclaurin series for x (as given in the Formula Booklet). You may assume that an infinite series can be integrated term-by-term, although the value of any constant of integration will need to be found.

[4 marks]